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Dense subgraph discovery

Measure of connectedness on edges

— # edge / # all possible
* [E|/ (V| choose 2), 1.0 for a clique
Globally sparse, locally dense

o-cligue

— |E| << |V|?, but vertex neighborhoods are dense
« High clustering coefficients — density of neighbor graph

Many nontrivial subgraphs with high density
— And relations among them

Not clustering: Absolute vs. relative density




Dense subgraphs matter in
many applications

« Significance or anomaly
— Spam link farms (Gioson et al., ‘05]
— Real-time stories [angsi et al., 12]

Social networking system

front-end data store clients 9 F£%
nnnnnn (applicationy N :
! Osama Obama C.I.A. Abbottabad
- \ : Dense subgraph / Story
social graph data st

« Computation & summarization
— SyStem thrOughpUtS [Gionis et al., ‘“13]
— Graph visualization avarez et at., ‘06




Two effective algorithms to find dense
subgraphs with hierarchical relations

* k-core: Every vertex | |® k-truss: Every edge

has at least k has at least k
— [Seidman, ‘83], [Matula & Beck, ‘83] — [Cohen ‘08]

o \
=




Peeling algorithm finds the
k-cores & k-trusses

« Core numbers of vertices. O(|E|) Matuia & Beck, ‘83]
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Observation: k-truss IS just k-core
on the edge-triangle graph!

* Edge and triangle relations
— Not a binary relation — three edges In a triangle

* Bulld bipartite graph!




Why limit to A-truss?

« Small cliques in larger cliques

— 1-cliques in 2-cliques (vertices and edges)

— 2-cliques in 3-cliques (edges and triangles)
» (Generalize for any cligue

N ("< 9)

« Convert to bipartite

— - left vertices

— -> right vertices

— Connect if right contains left



Nucleus decomposition generalizes
k-core and k-truss algorithms

 Say R is  Sis ("< )

* Kk-(r, 8) nucleus: Every = takes part in

at least kK number of S
— Each IS connected by series of Ss

C

r=1, s=2 r=2, s=3 N

k-core | | k-truss L7
(stronger conn.)

div) = k /\e) = k O----0)
Simply connected Triangle connected

Sariyuce, Seshadhri, Pinar, Catalyurek, WWW 2015 (Best paper runner-up)



Some nucleus examples

13 GIB) nucleusm E 1, ( 114 | nucleus
Fach vertex has at least Fach vertex has at least
triangle
XX
XX
O

O

\_/
24 nucleus

Each edge has at least Each edge has at least
triangles
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Peeling works for

nucleus decomposition as well!
° Oﬂ the blpartlte graph r-cues s-cliques  r-cliques s-cliques

— Degree based

e Sounds expensive?
— Yes, In theory
—r=3,s=4: O(>_, cc(v)d(v)?)
— But practical

 Clustering coefficients decay with the degree in ==
many real-world networks

— Can be scaled to tens of millions of edges




APS Citation Network Analysis

A——+B : A subsumesB
A< —B : AandB are same

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

Synchronization
networks

Random
walks
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Epidemic
spreading

et —— — —
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______________________________________________

(2,3)-nuclei (3,4)-nuclei

Sariyuce, Seshadhri, Pinar, Catalyurek, TWEB (to appear)
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Summarize & visualize the graph
with the nucleus hierarchy

* Interactively inspect massive networks
— Ongoing collaboration with UCSC visualization people
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Practical, CAN be made faster

¢ Sequential

* Less than an hour for 39M edge
— 6000 nuclel, with = 10 vertex
— State-of-the-art algorithm reports one in a minute

« SO Many opportunities! (Fun problem)
(in seconds) V]| E||>, c3(v)d(v)|(3,4) time
twitter 81.30K| 2.68M 1.8B 396
web-NotreDame ||325.72K| 1.49M 33.9B 671
web-Google 875.7T1K| 5.10M 11.4B 163
as-skitter 1.69M|11.09M 1.6B 1,036
wikipedia-2005 1.63M|19.75M 741B 1,312
wiki-Talk 2.39M| 5.02M 136B 605
wikipedia-200611|| 3.14M|39.38M 2,197B 3,039




Peeling is not enough to find
the entire hierarchy

* Peeling finds core, truss values

« \What about constructing connected subgraphs?
« Easy for k-core,O(|E|) -- Challenging for higher-orders!

— Construct subgraphs while peeling
* And build the hierarchy (VLDB'17)

—_— b

Sariyuce & Pinar, VLDB 2017 (to appear)



Adapting Union-Find

* \WWe adapt Union-Find for multiple levels
— Merge disjoint trees and hierarchy tree

e Sub-nucleus: r-cligues with same K value
* Find subnuclel in decreasing order of K values
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We still traverse, any way to avoid?

» Construct subgraphs during peeling

SK BE MIT ST TX TW GO UK WK
100 x x x x w w w w x
80 |
60 r
40 |
20

100 f
80 |
60 |
40 |
20 |
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What about other graph types?
Bipartite networks?

» Author-paper, word-document, actor-movie...
— Bipartite in nature, no triangle

* Most project bipartite to unipartite
— Author-paper - Co-authorship Bl | |Ep|
58.6K| 95.1K

— |E| explodes! 100x observed 30.7K| 84.8K

! . .
— Information lost! <[440.2K]| 44.5M[>

L . 96.7K | 336.5K |
* Projections are not bijective E 6MI157 5 M

92.8K| 2.0M

* Find dense regions directly on bipartite graph!



Bipartite networks can be peeled
as well, if you devise a ‘triangle’

* Focus on the smallest non-trivial structure
— (2, 2)-biclique, or butterfly

* \ertex-butterfly, edge-butterfly relations

— K-tip: Each vertex has > k butterflies
— Kk-wing. Each edge has = k butterflies

(2,3) nuclei
10* ‘ ‘ |
W

0] |
|V| 102 | o . 3 1-tip 1-wing — —

o | = . ] 3-tip ——  2-wing

10°

10° 10" 102 10°  DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0
U]

Sariyuce & Pinar, arXiv: 1611.02756



Streaming k-core decomposition

» Considers a sliding-window scenario
— Count-based or time-based

o Window of Current Data Data in the Future
Expired Data

0101001 1|{OFOOOTTOTOIIT000T00(1 1100111

Time Stamp 32 1

» Single edge insertion & removal algorithms
— Should have high processing rate
— Should be way faster than from-scratch solution
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10K edges processed per second
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graph size (# vertices)

« What about k-truss?
— Or other nucleus decompositions?

Sariyuce, Gedik, Jacques-Silva, Wu, Catalyurek, VLDB’13, VLDBJ
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Conclusion

Introduced the nucleus decomposition
— Generalizes k-core and k-truss, and extend
— Network analysis by the nucleus hierarchy

« Hierarchy construction embedded into peeling
» Bipartite networks

* Incremental algorithms
— Maintain dense subgraphs, temporal analysis

3/2/17 A. Erdem Sariyiice
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