
Finding Dense Subgraphs!
with Hierarchical Relations!

 in Real-world Networks

A. Erdem Sarıyüce
Sandia National Laboratories, Livermore CA

http://sariyuce.com!

Dense subgraph discovery

•  Measure of connectedness on edges

– # edge / # all possible

•  |E| / (|V| choose 2), 1.0 for a clique

•  Globally sparse, locally dense

–  |E| << |V|2, but vertex neighborhoods are dense

•  High clustering coefficients – density of neighbor graph

•  Many nontrivial subgraphs with high density
– And relations among them

•  Not clustering: Absolute vs. relative density

6-clique

2	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

•  Significance or anomaly

– Spam link farms [Gibson et al., ‘05]

– Real-time stories [Angel et al., ‘12]

•  Computation & summarization

– System throughputs [Gionis et al., ‘13]

– Graph visualization [Alvarez et al., ‘06]

front&end)

user)

Social'networking'system'

data)store)clients)
(applica2on)logic))

social)graph) data)stores)
(user)views))

…
)

Figure 1: Simplified request flow for handling event streams in
a social networking system. We focus on reducing the through-
put cost of the most complex step: querying and updating data
stores (shown with thick red arrows).

store clients when the user shares a new event, and the pull set, con-
taining contact views that are queried to assemble the user’s event
stream. The collection of push and pull sets for each user of the sys-
tem is called request schedule, and it has strong impact on perfor-
mance. Two standard request schedules are push-all and pull-all.
In push-all schedules, the push set contains all of user’s contacts,
while the pull set contains only the user’s own view. This schedule
is efficient in read-dominated workloads because each query gen-
erates only one request. Pull-all schedules are specular, and are
better suited for write-dominated workloads. More efficient sched-
ules can be identified by using a hybrid approach between pull- and
push-all, as proposed by Silberstein et al. [11]: for each pair of con-
tacts, choose between push and pull depending on how frequently
the two contacts share events and request event streams. This ap-
proach has been adopted, for example, by Tumblr.

In this paper we propose strictly cheaper schedules based on so-
cial piggybacking: the main idea is to process the requests of two
contacts by querying and updating the view of a third common con-
tact. Consider the example shown in Figure 2. For generality, we
model a social graph as a directed graph where a user may follow
another user, but the follow relationship is not necessarily symmet-
ric. In the example, Charlie’s view is in Art’s push set, so clients
insert every new event by Art into Charlie’s view. Consider now
that Billie follows both Art and Charlie. When Billie requests an
event stream, social piggybacking lets clients serving this request
pull Art’s updates from Charlie’s view, and so Charlie’s view acts
as a hub. Our main observation is that the high clustering coeffi-
cient of social networks implies the presence of many hubs, making
hub-based schedules very efficient [10].

Social piggybacking generates fewer data-store requests than ap-
proaches based on push-all, pull-all, or hybrid schedules. With a
push-all schedule, the system pushes new events by Art to Billie’s
view—the dashed thick red arrow in Figure 2(b). With a pull-all
schedule, the system queries events from Art’s view whenever Bil-
lie requests a new event stream—the dashed double green arrow
in Figure 2(b). With a hybrid schedule, the system executes the
cheaper of these two operations. With social piggybacking, the
system does not execute any of them.

Using hubs in existing social networking architectures is very
simple: it just requires a careful configuration of push and pull sets.
In this paper, we tackle the problem of calculating this configura-
tion, or in other words, the request schedule. The objective is to
minimize the overall rate of requests sent to views. We call this
problem the social-dissemination problem.

Our contribution is a comprehensive study of the problem of
social-dissemination. We first show that optimal solutions of the
social-dissemination problem either use hubs (as Charlie in Fig-

ure 2) or, when efficient hubs are not available, make pairs of users
exchange events by sending requests to their view directly. This
result reduces significantly the space of solutions that need to be
explored, simplifying the analysis.

We show that computing optimal request schedules using hubs is
NP-hard, and we propose an approximation algorithm, which we
call CHITCHAT. The hardness of our problem comes from the set-
cover problem, and naturally, our approximation algorithm is based
on a greedy strategy and achieves an O(log n) guarantee. Apply-
ing the greedy strategy, however, is non-trivial, as the iterative step
of selecting the most cost-effective subset is itself an interesting op-
timization problem, which we solve by mapping it to the weighted
densest-subgraph problem.

We then develop a heuristic, named PARALLELNOSY, which can
be used for very large social networks. PARALLELNOSY does not
have the approximation guarantee of CHITCHAT, but it is a parallel
algorithm that can be implemented as a MapReduce job and thus
scales to real-size social graphs.

CHITCHAT and PARALLELNOSY assume that the graph is static;
however, using a simple incremental technique, request schedules
can be efficiently adapted when the social graph is modified. We
show that even if the social graph is dynamic, executing an initial
optimization pays off even after adding a large number of edges to
the graph, so it is not necessary to optimize the schedule frequently.

Evaluation on the full Twitter and Flickr graphs, which have bil-
lions of edges, shows that PARALLELNOSY schedules can improve
predicted throughput by a factor of up to 2 compared to the state-
of-the-art scheduling approach of Silberstein et al. [11].

Using a social networking system prototype, we show that the
actual throughput improvement using PARALLELNOSY schedules
compared to hybrid scheduling is significant and matches very well
our predicted improvement. In small systems with few servers the
throughput is similar, but the throughput improvement grows with
the size of the system, becoming particularly significant for large
social networking systems that use hundreds of servers to serve
millions, or even billions, of requests.3 With 500 servers, PARAL-
LELNOSY increases the throughput of the prototype by about 20%;
with 1000 servers, the increase is about 35%; eventually, as the
number of server grows, the improvement approaches the predicted
2-factor increase previously discussed. In absolute terms, this may
mean processing millions of additional requests per second.

We also compare the performance of CHITCHAT and PARAL-
LELNOSY on large samples of the actual Twitter and Flickr graphs.
CHITCHAT significantly outperforms PARALLELNOSY, showing
that there is potential for further improvements by making more
complex social piggybacking algorithms scalable.

Overall, we make the following contributions:
• Introducing the concept of social piggybacking, formalizing the

social dissemination problem, and showing its NP-hardness;
• Presenting the CHITCHAT approximation algorithm and show-

ing its O(log n) approximation bound;
• Presenting the PARALLELNOSY heuristic, which can be paral-

lelized and scaled to very large graphs;
• Evaluating the predicted throughput of PARALLELNOSY sched-

ules on full Twitter and Flickr graphs;
• Measuring actual throughput on a social networking system

prototype;
• Comparing CHITCHAT and PARALLELNOSY on samples of

the Twitter and Flickr graphs to explore possible further gains.

3For an example, see: http://gigaom.com/2011/04/07/facebook-
this-is-what-webscale-looks-like/

Dense subgraphs matter in!
many applications

Dense Subgraph Maintenance under Streaming Edge
Weight Updates for Real-time Story Identification

Albert Angel
University of Toronto

albert@cs.toronto.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

Nikos Sarkas
University of Toronto

nsarkas@cs.toronto.edu

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

ABSTRACT

Recent years have witnessed an unprecedented proliferation of so-
cial media. People around the globe author, every day, millions
of blog posts, micro-blog posts, social network status updates, etc.
This rich stream of information can be used to identify, on an ongo-
ing basis, emerging stories, and events that capture popular atten-
tion. Stories can be identified via groups of tightly-coupled real-
world entities, namely the people, locations, products, etc., that are
involved in the story. The sheer scale, and rapid evolution of the
data involved necessitate highly efficient techniques for identifying
important stories at every point of time.

The main challenge in real-time story identification is the main-
tenance of dense subgraphs (corresponding to groups of tightly-
coupled entities) under streaming edge weight updates (resulting
from a stream of user-generated content). This is the first work
to study the efficient maintenance of dense subgraphs under such
streaming edge weight updates. For a wide range of definitions
of density, we derive theoretical results regarding the magnitude
of change that a single edge weight update can cause. Based on
these, we propose a novel algorithm, DYNDENS, which outper-
forms adaptations of existing techniques to this setting, and yields
meaningful results. Our approach is validated by a thorough exper-
imental evaluation on large-scale real and synthetic datasets.

1. INTRODUCTION
Recent years have witnessed an unprecedented proliferation of

social media. Millions of people around the globe author on a daily
basis millions of blog posts, micro-blog posts and social network
status updates. This content offers an uncensored window into cur-
rent events, and emerging stories capturing popular attention.

For instance, consider the U.S. military strike in Abbottabad,
Pakistan in early May 2011, which resulted in the death of Osama
bin Laden. This event was extensively covered on Twitter, the pop-
ular micro-blogging service, significantly in advance of traditional
media, starting with the live coverage of the operation by an (unwit-
ting) local witness, to millions of tweets around the world providing

Figure 1: Real-time identification of “bin Laden raid” story,
and connection to ENGAGEMENT

a multifaceted commentary on every aspect of the story. Similar, if
fewer, online discussions cover important events on an everyday
basis, from politics and sports, to the economy and culture (no-
table examples from recent years range from the death of Michael
Jackson, to revolutions in the Middle East and the economic re-
cession). In all cases, stories have a strong temporal component,
making timeliness a prime concern in their identification.

Interestingly, such stories can be identified by leveraging the
real-world entities involved in them (e.g. people, politicians, prod-
ucts and locations) [26]. The key observation is that each post on
the story will tend to mention the same set of entities, around which
the story is centered. In particular, as post length restrictions or
conventions typically limit the number of entities mentioned in a
single post, each post will tend to mention entities corresponding
to a single facet of a story. Thus, by identifying pairs of entities
that are strongly associated (recurrently mentioned together), one
can implicitly detect facets of the underlying event of which they
are the main actors. By piecing together these aspects, the overall
event of interest can be inferred.

For example, in the case of the U.S. military strike mentioned
above, one facet, consisting of people discussing the raid, is cen-
tered around “Abbottabad” where the raid took place, and the in-
volvement of the “C.I.A.”; another thread commenting on the pres-
idential announcement, involves “Barack Obama” and “Osama bin

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Articles from this volume were invited to present

their results at The 38th International Conference on Very Large Data Bases,

August 27th - 31st 2012, Istanbul, Turkey.

Proceedings of the VLDB Endowment, Vol. 5, No. 6

Copyright 2012 VLDB Endowment 2150-8097/12/02... $ 10.00.

574

3	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

0-truss

2-truss

2-truss

1-truss

2-core
3-core

•  k-core: Every vertex
has at least k edges
–  [Seidman, ‘83], [Matula & Beck, ‘83]

Two effective algorithms to find dense
subgraphs with hierarchical relations

4	

•  k-truss: Every edge
has at least k triangles
–  [Cohen ‘08]

3-core

2-core

2-truss

0-truss

1-truss

2-truss

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Peeling algorithm finds the!
k-cores & k-trusses

•  Core numbers of vertices. O(|E|) [Matula & Beck, ‘83]

•  Truss numbers of edges. O(| |) [Cohen ‘08]

5	

3

4 4

4

2

5

4 3

3

4

3

4 3

3

2

5

4 3

3

4

3

3 3

3

2

5

4 3

3

4

3

3 3

3

2

3

3 3

3

3

2-core
3-core

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Observation: k-truss IS just k-core!
on the edge-triangle graph!

•  Edge and triangle relations

– Not a binary relation – three edges in a triangle

•  Build bipartite graph!

a

d

c

b

e

a

d

b

c

e

abe

cde

Edges Triangles

6	

1

1

1

1

2

Edges Triangles

1

1

1

1

2

abe

cde

1

1

1

1

1 1

1

1

1

1

Edges Triangles

1

1

1

1

1

abe

cde

Edges Triangles

1

1

1

1

1

abe

cde

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Why limit to k-truss?

•  Small cliques in larger cliques

– 1-cliques in 2-cliques (vertices and edges)

– 2-cliques in 3-cliques (edges and triangles)

•  Generalize for any clique
–  r-cliques in s-cliques (r < s)

•  Convert to bipartite

–  r-cliques à left vertices

–  s-cliques à right vertices

– Connect if right contains left

7	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Nucleus decomposition generalizes
k-core and k-truss algorithms

•  Say R is r-clique, S is s-clique (r < s)
•  k-(r, s) nucleus: Every R takes part in

at least k number of S
–  Each Ri, Rj pair is connected by series of Ss

8	

r=2, s=3!

k-truss!
(stronger conn.)

 (e) ≥ k

Triangle connected

r=1, s=2!

k-core

d(v) ≥ k

Simply connected

a

b

c

Sariyuce, Seshadhri, Pinar, Catalyurek, WWW 2015 (Best paper runner-up) !
A.	
 Erdem	
 Sarıyüce	
 3/2/17	

2 - (2 , 3) nucleus

Each edge has at least
two triangles

Some nucleus examples

Each edge has at least
two 4-cliques

9	

2 - (2 , 4) nucleus

1 - (1 , 3) nucleus

Each vertex has at least

one triangle

1 - (1 , 4) nucleus

Each vertex has at least

one 4-clique

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

•  On the bipartite graph

– For vertex set of r-cliques

– Degree based

•  Sounds expensive?

– Yes, in theory

–  r=3, s=4:

– But practical

•  Clustering coefficients decay with the degree in
many real-world networks

– Can be scaled to tens of millions of edges

Peeling works for!
nucleus decomposition as well!

is processed or traversed at most once in set-k and the for-
est building. Suppose R has vertices v1, v2, . . . , vr. We can
find all Kss containing R by looking at all (s− r)-tuples in
each of the neighborhoods of vi. (Indeed, it suffices to look
at just one such neighborhood.) This takes time at most
∑

R

∑

v∈R d(v)s−r =
∑

v

∑

R∋v d(v)
s−r =

∑

v ctr(v)d(v)
s−r.

Let us understand these running times. When r < s ≤ 3,
it clearly benefits to go with Thm. 1. Triangle enumeration
is a well-studied problem and there exist numerous opti-
mized, parallel solutions for the problem. In general, the
classic triangle enumeration of Chiba and Nishizeki takes
O(m3/2) [10] and is much better in practice [12, 37, 42].
This completely bounds the time and space complexities.

For our best results, we build the (3, 4)-nuclei, and the
number of K4s is too large to store. We go with Thm. 2.
The storage is now at most the number of triangles, which
is manageable. The running time is basically bounded by
O(

∑

v ctr(v)d(v)). The number of triangles incident to v,
ct3(v) is cc(v)d(v)2, where cc(v) is the clustering coefficient
of v. We therefore get a running time of O(

∑

v cc(v)d(v)
3).

This is significantly superlinear, but clustering coefficients
generally decay with degree [35, 40]. Overall, the imple-
mentation can be made to scale to tens of millions of edges
with little difficulty.

5. EXPERIMENTAL RESULTS
We applied our algorithms to large variety of graphs, ob-

tained from SNAP [41] and UF Sparse Matrix Collection[1].
The vital statistics of these graphs are given in Tab. 1. All
the algorithms in our framework are implemented in C++
and compiled with gcc 4.8.1 at -O2 optimization level. All
experiments are performed on a Linux operating system run-
ning on a machine with two Intel Xeon E5520 2.27 GHz
CPUs, with 48GB of RAM.

We computed the (r, s)-nuclei for all choices of r < s ≤
4, but do not present all results for space considerations.
We mostly observe that the forest of (3, 4)-nuclei provides
the highest quality output, both in terms of hierarchy and
density.

As mentioned earlier, we will now treat the nuclei as just
induced subgraphs of G. A nucleus can be considered as a
set of vertices, and we take all edges among these vertices
(induced subgraph) to attain the subgraph. The size of a
nucleus always refers to the number of vertices, unless oth-
erwise specified. For any set S of vertices, the density of the
induced subgraph is |E(S)|/

(

|S|
2

)

, where E(S) is the set of
edges internal to S. We ignore any nucleus with less than
10 vertices. Such nuclei are not considered in any of our
results.

For brevity, we present detailed results on only 4 graphs
(given in Tab. 1): facebook, soc-sign-epinions,
web-NotreDame, and wikipedia-200611. This covers a vari-
ety of graphs, and other results are similar.

5.1 The forest of nuclei
We were able to construct the forest of (3, 4)-nuclei for

all graphs in Tab. 1, but only give the forests for facebook
(Fig. 3), soc-sign-epinions (Fig. 6), and web-NotreDame
(Fig. 7). For the web-NotreDame figure, we could not present
the entire forest, so we show some trees in the forest that
had nice branching. The density is color coded, from blue
(density 0) to red (density 1). The nuclei sizes, in terms of

vertices, are coded by shape: circles correspond to at most
102 vertices, hexagons in the range [102, 103], squares in the
range [103, 104], and triangles are anything larger. The rel-
ative size of the shape, is the relative size (in that range) of
the set.
Overall, we see that the (3, 4)-nuclei provide a hierarchi-

cal representation of the dense subgraphs. The leaves are
mostly red, and their densities are almost always > 0.8.
But we obtain numerous nuclei of intermediate sizes and
densities. In the facebook forest and to some extent in the
web-NotreDame forest, we see hexagons of light blue to green
(nuclei of > 100 vertices of densities of at least 0.2). The
branching is quite prominent, and the smaller dense nuclei
tend to nest into larger, less dense nuclei. This held in every
single (3, 4)-nucleus forest we computed. This appears to
validate the intuition that real-world networks have a hier-
archical structure.
The (3, 4)-nuclei figures provide a useful visualization of

the dense subgraph structure. The web-NotreDame has a
million edges, and it is not possible to see the graph as a
whole. But the forest of nuclei breaks it down into mean-
ingful parts, which can be visually inspected. The overall
forest is large (about 2000 nuclei), but the nesting structure
makes it easy to absorb. We have not presented the results
here, but even the wikipedia-200611 graph of 38 million
edges has about a forest of only 4000 nuclei (which we were
able to easily visualize by a drawing tool).
Other choices of r, s for the nuclei do not lead to much

branching. We present all nucleus trees for r < s ≤ 4 for
the facebook graph in Fig. 8 (except (3, 4) which is given
in Fig. 3). Clearly, when r = 1, the nucleus decomposition
is boring. For r = 2, some structure arises, but not as
dramatic of Fig. 3. Results vary over graphs, but for r = 1,
there is pretty much just a chain of nuclei. For r = 2, some
graphs show more branching, but we consistently see that
for (3, 4)-nuclei, the forest of nuclei is always branched.

5.2 Dense subgraph discovery
We plot the density histograms of the (3, 4)-nuclei for var-

ious graphs in Fig. 9. The x-axis is (binned) density and
the y-axis is the number of nuclei (all at least 10 vertices)
with that density. It can be clearly observed that we find
many non-trivial dense subgraphs. It is surprising to see
how many near cliques (density > 0.9) we find. We tend
to find more subgraphs of high density, and other than the
web-NotreDame graph, the mass of the histogram is shifted
to the right. The number of subgraphs of density at least
0.5 is in the order of hundreds (and more than a thousand
for wikipedia-200611).

An alternate presentation of the dense subgraphs is a scat-
ter plot of all (3, 4)-nuclei with size in vertices versus den-
sity. This is given in Fig. 2 and Fig. 10, where the red dots
correspond to the nuclei. We see that dense subgraphs are
obtained in all scales of size, which is an extremely impor-
tant feature. Nuclei capture more than just the densest (or
high density) subgraphs, but find large sets of lower density
(say around 0.2). Note that 0.2 is a significant density for
sets of hundreds of vertices.

5.2.1 Comparisons with previous art
How does the quality of dense subgraphs found compare to

the state-of-the-art? In the scatter plots of Fig. 2 and Fig. 10,
we also show the output of two algorithms of [43] in green

932

10	

r-cliques s-cliques
1

2

1

3

3

1

r-cliques s-cliques
1

1

1

2

2

1

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

APS Citation Network Analysis

11	

Sariyuce, Seshadhri, Pinar, Catalyurek, TWEB (to appear) !

155
0.12

43
0.34

10
0.97

10
1.00

330
0.06

104
0.18

25
0.55

19
0.71

14
0.83

10
1.00

13
0.86

Percolation theory

Random
walks

Epidemic
spreading

Synchronization
networks

A B : A subsumes B
A B : A and B are same

(2,3)-nuclei (3,4)-nuclei

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

fre
qu
en
cy

density

Figure 1: Density histogram of facebook (3, 4)-nuclei. 145
nuclei have density of at least 0.8 and 359 nuclei are with
the density of more than 0.25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

ed
ge

 d
en

sit
y

number of vertices

k-3,4
LocalSearchOQC

GreedyOQC

Figure 2: Size vs. density plot for facebook (3, 4)-nuclei. 50
nuclei are larger than 30 vertices with the density of at least
0.8. There are also 138 nuclei larger than 100 vertices with
density of at last 0.25.

are NP-hard, even to approximate [24, 16, 28].
For graph analysis, one rarely looks for just a single (or the

optimal, for whatever notion) dense subgraph. We want to
find many dense subgraphs and understand the relationships
among them. Ideally, we would like to see if they nest within
each other, if the dense subgraphs are concentrated in some
region, and if they occur at various scales of size and density.
Our paper is motivated by the following questions.

• How do we attain a global, hierarchical representation
of many dense subgraphs in a real-world graph?

• Can we define an e⇤ciently solvable objective that di-
rectly provides many dense subgraphs? We wish to avoid
heuristics, as they can be di⇤cult to predict formally.

1.2 Our results
Nucleus decompositions: Our primary theoretical con-

tribution is the notion of nuclei in a graph. Roughly speak-
ing, an (r, s)-nucleus, for fixed (small) positive integers r <
s, is a maximal subgraph where every r-clique is part of
many s-cliques. (The real definition is more technical and in-
volves some connectivity properties.) Moreover, nuclei that
do not contain one another cannot share an r-clique. This

Figure 3: (3, 4)-nuclei forest for facebook. Legends for den-
sities and sizes are shown at the top. Long chain paths are
contracted to single edges. In the uncontracted forest, there
are 47 leaves and 403 nuclei. Branching depicts the di�er-
ent regions in the graph, 13 connected components exist in
the top level. Sibling nuclei have limited overlaps up to 7
vertices.

is inspired by and is a generalization of the classic notion of
k-cores, and also k-trusses (or triangle cores).
We show that the (r, s)-nuclei (for any r < s) form a

hierarchical decomposition of a graph. The nuclei are pro-
gressively denser as we go towards the leaves in the decom-
position. We provide an exact, e⇤cient algorithm that finds
all the nuclei and builds the hierarchical decomposition. In
practice, we observe that (3, 4)-nuclei provide the most in-
teresting decomposition. We find the (3, 4)-nuclei for a large
variety of more than 20 graphs. Our algorithm is feasible in
practice, and we are able to process a 39 million edge graph
is less than an hour (using commodity hardware).
Dense subgraphs from (3, 4)-nuclei: The (3, 4)-nuclei

provide a large set of dense subgraphs for range of densities
and sizes. For example, there are 403 (3, 4)-nuclei (of size at
least 10 vertices) in a facebook network of 88K edges. We
show the density histogram of these nuclei in Fig. 1, plotting
the number of nuclei with a given density. Observe that
we get numerous dense subgraphs, and many with density
fairly close to 1. In Fig. 2, we present a scatter plot of vertex
size vs density of the (3, 4)-nuclei. Observe that we obtain
dense subgraphs over a wide range of sizes. For comparison,
we also plot the output of recent dense subgraph algorithms
from Tsourakakis et al [43]. (These are arguably the state-of-
the-art. More details in next section.) Observe that (3, 4)-
nuclei give dense subgraphs of comparable quality. In some
cases, the output of [43] is very close to a (3, 4)-nucleus.
Representing a graph as forest of (3, 4)-nuclei: We

build the forest of (3, 4)-nuclei for all graphs experimented
on. An example output is that of Fig. 3, the forest of (3, 4)-
nuclei for the facebook network. Each node of the forest is
a (3, 4)-nucleus, and tree edges indicate containment. More

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Summarize & visualize the graph !
with the nucleus hierarchy

12	
 3/2/17	
 A.	
 Erdem	
 Sarıyüce	

•  Interactively inspect massive networks

–  Ongoing collaboration with UCSC visualization people

Practical, CAN be made faster

•  Sequential

•  Less than an hour for 39M edge

– 6000 nuclei, with ≥ 10 vertex

– State-of-the-art algorithm reports one in a minute

•  So many opportunities! (Fun problem)
(in seconds) |V| |E| Pv c3(v)d(v) (3, 4) time

twitter 81.30K 2.68M 1.8B 396
web-NotreDame 325.72K 1.49M 33.9B 671
web-Google 875.71K 5.10M 11.4B 163
as-skitter 1.69M 11.09M 1.6B 1, 036
wikipedia-2005 1.63M 19.75M 741B 1, 312
wiki-Talk 2.39M 5.02M 136B 605
wikipedia-200611 3.14M 39.38M 2, 197B 3, 039

Table 1: Important statistics for the real-world graphs of di↵erent types and sizes. Largest graph in the dataset has more
than 39M edges. Times are in seconds. Density of subgraph S is |E(S)|/�|S|

2

�
where E(S) is the set of edges internal to S.

Sizes are in number of vertices.

|V| |E| Description

P
v c3(v)d(v) (3, 4) time (sec)

[?]
Density (size)

(3,4)-nucleus
Density (size)

dolphins 62 159 Biological 2.2K < 1 0.68(8) 0.71(8)
polbooks 105 441 US Politics Books 23.8K < 1 0.67(13) 0.62(13)
adjnoun 112 425 Adj. and Nouns 17.6K < 1 0.60(15) 0.22(32)
football 115 613 World Soccer 98 26.3K < 1 0.89(10) 0.89(10)
jazz 198 2.74K Musicians 2.3M < 1 1.00(30) 1.00(30)
celegans n. 297 2.34K Biological 418K < 1 0.61(21) 0.91(10)
celegans m. 453 2.04K Biological 565K < 1 0.67(17) 0.64(18)
email 1.13K 5.45K Email 1.2M < 1 1.00(12) 1.00(12)
facebook 4.03K 88.23K Friendship 712M 93 0.83(54) 0.98(109)
protein inter. 9.67K 37.08K Protein Inter. 35M < 1 1.00(11) 1.00(11)
as-22july06 22.96K 48.43K Autonomous Sys. 199M < 1 0.58(12) 1.00(18)
twitter 81.30K 2.68M Follower-Followee 1.8B 396 0.85(83) 1.00(26)
soc-sign-epinions 131.82K 841.37K Who-trust-whom 1.4B 242 0.71(79) 1.00(112)
coAuthorsCiteseer 227.32K 814.13K CoAuthorship 2.1B 50.1 1.00(87) 1.00(87)
citationCiteseer 268.49K 1.15M Citation 297M 3.4 0.71(10) 1.00(13)
web-NotreDame 325.72K 1.49M Web 33.9B 671 1.00(151) 1.00(155)
amazon0601 403.39K 3.38M CoPurchase 802M 23 1.00(11) 1.00(11)
web-Google 875.71K 5.10M Web 11.4B 163 1.00(46) 1.00(33)
com-youtube 1.13M 2.98M Social 451M 43 0.49(119) 0.92(24)
as-skitter 1.69M 11.09M Autonomous Sys. 1.6B 1, 036 0.53(319) 0.94(91)
wikipedia-2005 1.63M 19.75M Wikipedia Link 741B 1, 312 0.53(33) 0.82(14)
wiki-Talk 2.39M 5.02M Wikipedia User 136B 605 0.48(321) 0.59(95)
wikipedia-200609 2.98M 37.26M Wikipedia Link 2, 015B 2, 830 0.49(376) 0.62(103)
wikipedia-200611 3.14M 39.38M Wikipedia Link 2, 197B 3, 039 1.00(55) 1.00(32)

Table 2: Important statistics for the real-world graphs of di↵erent types and sizes. Largest graph in the dataset has more
than 39M edges. Times are in seconds. Density of subgraph S is |E(S)|/�|S|

2

�
where E(S) is the set of edges internal to S.

Sizes are in number of vertices.

Figure 6: (3, 4)-nuclei forest for soc-sign-epinions. There are 465 total nodes and 75 leaves in the forest. There is a clear
hierarchical structure of dense subgraphs. Leaves are mostly red (> 0.8 density). There are also some light blue hexagons,
representing subgraphs of size � 100 vertices with density of at least 0.2.

13	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Peeling is not enough to find!
 the entire hierarchy

•  Peeling finds core, truss values

•  What about constructing connected subgraphs?

•  Easy for k-core,O(|E|) -- Challenging for higher-orders!

–  Construct subgraphs while peeling
•  And build the hierarchy (VLDB’17)

14	

2

3

3

3

3

1

3

3

3

3

2 2

D

B

C

A

E

F

F 3 3 E

2

1

BCDEF

ABCDEF

Sariyuce & Pinar, VLDB 2017 (to appear) !
A.	
 Erdem	
 Sarıyüce	
 3/2/17	

•  We adapt Union-Find for multiple levels

– Merge disjoint trees and hierarchy tree

•  Sub-nucleus: r-cliques with same K value

•  Find subnuclei in decreasing order of K values

Adapting Union-Find

6
5

4

5

6 5
5

D A

C

E L F M

J

H B I O K N

G

4

4 4

55

55

5

15	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

L

M O

N

C F J G K

D E H I

A B

LMNO

CDE F J GHI K

A B

Table 5: (2,3) and (3,4) nucleus decomposition results. Right-most column for each is the runtimes of the fastest
algorithm and rest are its speedup over other algorithms. Starred numbers (*) show lower bounds, when the algorithm
did not finish in 2 days. Hypo is the hypothetical limit for the best possible traversal based algorithm. For (2,3), it
is done on edges and triangle connections, and for (3,4) it is on triangles and four-clique connections. Naive is Alg. 3
and TCP* is the indexing algorithm proposed by [26] and does not even include (2, 3) nuclei finding. DFT is the one
using Alg. 5 and FND is the Alg. 8.

(2,3)-nuclei (3,4)-nuclei
speedups with respect to time (s) speedups with respect to time (s)

Hypo Naive TCP*[26] DFT FND Hypo Naive DFT FND

skitter 1.54x 45.62x 3.69x 2.04x 91.3 1.78x 163.91

⇤
x 1.96x 1054.2

Berkeley13 1.13x 10.76x 3.41x 1.40x 7.3 1.42x 1812.47

⇤
x 1.52x 95.3

MIT 1.10x 11.68x 3.45x 1.33x 2.8 1.45x 3848.02

⇤
x 1.53x 44.9

Stanford3 1.10x 12.58x 3.41x 1.36x 7.8 1.48x 1321.89

⇤
x 1.58x 130.7

Texas84 1.10x 14.41x 3.35x 1.37x 16.8 1.49x 679.06

⇤
x 1.57x 254.5

twit-hb 1.33x 16.24x 3.27x 1.49x 255.5 1.78x 38.96

⇤
x 1.81x 4434.9

Google 1.31x 1729.93x 3.90x 1.59x 13.0 1.35x 1083.02

⇤
x 1.43x 159.6

uk-2005 1.68x 90.50x 11.07x 3.64x 562.5 1.24x 1.98

⇤
x 1.98

⇤
x 87329.6

wiki-0611 1.53x 7.06x 3.37x 1.63x 584.9 1.82x 23.00

⇤
x 1.91x 7513.5

avg 1.31x 215.4x 4.32x 1.76x best 1.53x > 996.92x > 1.70 x best

T2,3s which means no work is done by disjoint-set forest and
all the time is spent on traversal (see Figure 6). As men-
tioned in Section 4, extended peeling in FND finds non-
maximal T2,3, and the count might be much larger than the
number of T2,3s. However, it is not the case. Last 6 columns
of Table 3 show that there is no significant di↵erence; on av-
erage non-maximal T2,3s are 24% more than T2,3s.

DFT and FND algorithms require additional memory, as
mentioned at the end of Section 4.2. The upper bound of
additional space for DFT is 6 · |T2,3|+ 3 · |E|, and takes at
most ⇠650MB for any graph in our dataset, where int is
used to store each number (four bytes). Although the upper
bound of |T2,3| is |E|, we observed that it is only 13.1%
of |E| on average, which can be calculated from Table 3.
Regarding the FND, upper bound is given as 4 · |T ⇤

2,3|+ 3 ·
|c#(T ⇤

2,3)|+|E| (see Section 4.3) and it takes at most ⇠1.4GB
for the experimented graphs (two ints for each connection
in c#(T

⇤
2,3)). We observed that uk-2005 graph have so many

edges with no triangles that results in isolated T ⇤
2,3s (and

T ⇤
3,4s), so |c#(T ⇤

2,3)| = |c#(T ⇤
3,4)| = 0. For the rest, we see

that |c#(T ⇤
2,3)| is only 8.7% of the upper bound (

�
3
2

�
|4|), on

average.
Lastly, we check FND vs. Hypo. FND is faster on all in-

stances, and 1.31x on average, meaning that it outperforms
any possible traversal-based algorithm for (2, 3) nucleus
decomposition. This is so important to show the strength of

 0
 20
 40
 60
 80

 100

%
 w

rt
to

ta
l D

FT

 0
 20
 40
 60
 80

 100

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

%
 w

rt
to

ta
l D

FT

peeling
postproc

WKUKGOTWTXSTMITBESK
Figure 6: (2,3) [top] and (3,4) [bottom] nucleus decom-
position comparison for DFT (the one using Alg. 5 for
traversal) and FND (shown in Alg.8). Two main results:
(1) Traversal part of DFT is close to the peeling part,
(2) FND is able to keep the total runtime comparable to
the peeling part of DFT

(1) detecting the non-maximal T2,3 early to avoid traversal,
(2) using disjoint-set forest data structure to handle on-the-
fly computation.

5.3 (3, 4) nuclei
Table 5 and Figure 6 gives the comparison of all algorithms
on (3, 4)-nucleus decomposition, which has been shown to
give subgraphs with highest density and most detailed hi-
erarchy [42]. Results are similar to the (2, 3) case: FND is
the best and speedups are sharper. Naive algorithm could
not be completed in 2 days for any graph. DFT also could
not finish its computation on uk-2005 graph in that time.
Regarding the memory requirement, we see that DFT and
FND take at most ⇠10GB and ⇠3.5GB for the graphs in
our dataset. Also, |T3,4| and |c#(T ⇤

3,4)| are far from the upper
bounds, only of 3.9% and 2.5% on average. Overall, FND
outperforms all others. Figure 6 shows that total time of
FND is only 21% more than the peeling time of DFT and
only 2% slower on wiki-0611. Most significantly, FND is
1.53x faster than hypothetical limit (Hypo) of any possible
traversal-based (3, 4) nucleus decomposition algorithm.

6. CONCLUSION
In this work, we focused on computing the hierarchy of dense
subgraphs given by peeling algorithms. We first provided a
detailed review of previous work and pointed misconceptions
about k-core and k-truss decompositions. We proposed two
generic algorithms to compute any nucleus decomposition.
Our idea to leverage disjoint-set forest data structure for
hierarchy computation works well in practice. We further
improved the performance by detecting the subgraphs dur-
ing peeling process to avoid traversal. We also adapted and
implemented an existing idea for k-core decomposition hi-
erarchy, and showed its benefit. Overall, our algorithms
significantly outperformed the existing alternatives.
There are two open questions that might be worth to look

at. First is about the analysis. Nested structures given by
the resulting hierarchy only show the k-(r, s) nuclei. Instead
looking at the Tr,ss, which are many more than the k-(r, s)
nuclei, might reveal more insight about networks. This actu-
ally corresponds to the hierarchy-skeleton structure that our
algorithms produce. Second is regarding the performance.
We believe that adapting the existing parallel peeling algo-
rithms for the hierarchy computation can be helpful.

Table 5: (2,3) and (3,4) nucleus decomposition results. Right-most column for each is the runtimes of the fastest
algorithm and rest are its speedup over other algorithms. Starred numbers (*) show lower bounds, when the algorithm
did not finish in 2 days. Hypo is the hypothetical limit for the best possible traversal based algorithm. For (2,3), it
is done on edges and triangle connections, and for (3,4) it is on triangles and four-clique connections. Naive is Alg. 3
and TCP* is the indexing algorithm proposed by [26] and does not even include (2, 3) nuclei finding. DFT is the one
using Alg. 5 and FND is the Alg. 8.

(2,3)-nuclei (3,4)-nuclei
speedups with respect to time (s) speedups with respect to time (s)

Hypo Naive TCP*[26] DFT FND Hypo Naive DFT FND

skitter 1.54x 45.62x 3.69x 2.04x 91.3 1.78x 163.91

⇤
x 1.96x 1054.2

Berkeley13 1.13x 10.76x 3.41x 1.40x 7.3 1.42x 1812.47

⇤
x 1.52x 95.3

MIT 1.10x 11.68x 3.45x 1.33x 2.8 1.45x 3848.02

⇤
x 1.53x 44.9

Stanford3 1.10x 12.58x 3.41x 1.36x 7.8 1.48x 1321.89

⇤
x 1.58x 130.7

Texas84 1.10x 14.41x 3.35x 1.37x 16.8 1.49x 679.06

⇤
x 1.57x 254.5

twit-hb 1.33x 16.24x 3.27x 1.49x 255.5 1.78x 38.96

⇤
x 1.81x 4434.9

Google 1.31x 1729.93x 3.90x 1.59x 13.0 1.35x 1083.02

⇤
x 1.43x 159.6

uk-2005 1.68x 90.50x 11.07x 3.64x 562.5 1.24x 1.98

⇤
x 1.98

⇤
x 87329.6

wiki-0611 1.53x 7.06x 3.37x 1.63x 584.9 1.82x 23.00

⇤
x 1.91x 7513.5

avg 1.31x 215.4x 4.32x 1.76x best 1.53x > 996.92x > 1.70 x best

T2,3s which means no work is done by disjoint-set forest and
all the time is spent on traversal (see Figure 6). As men-
tioned in Section 4, extended peeling in FND finds non-
maximal T2,3, and the count might be much larger than the
number of T2,3s. However, it is not the case. Last 6 columns
of Table 3 show that there is no significant di↵erence; on av-
erage non-maximal T2,3s are 24% more than T2,3s.

DFT and FND algorithms require additional memory, as
mentioned at the end of Section 4.2. The upper bound of
additional space for DFT is 6 · |T2,3|+ 3 · |E|, and takes at
most ⇠650MB for any graph in our dataset, where int is
used to store each number (four bytes). Although the upper
bound of |T2,3| is |E|, we observed that it is only 13.1%
of |E| on average, which can be calculated from Table 3.
Regarding the FND, upper bound is given as 4 · |T ⇤

2,3|+ 3 ·
|c#(T ⇤

2,3)|+|E| (see Section 4.3) and it takes at most ⇠1.4GB
for the experimented graphs (two ints for each connection
in c#(T

⇤
2,3)). We observed that uk-2005 graph have so many

edges with no triangles that results in isolated T ⇤
2,3s (and

T ⇤
3,4s), so |c#(T ⇤

2,3)| = |c#(T ⇤
3,4)| = 0. For the rest, we see

that |c#(T ⇤
2,3)| is only 8.7% of the upper bound (

�
3
2

�
|4|), on

average.
Lastly, we check FND vs. Hypo. FND is faster on all in-

stances, and 1.31x on average, meaning that it outperforms
any possible traversal-based algorithm for (2, 3) nucleus
decomposition. This is so important to show the strength of

 0
 20
 40
 60
 80

 100

%
 w

rt
to

ta
l D

FT

 0
 20
 40
 60
 80

 100

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

DF
T

FN
D

%
 w

rt
to

ta
l D

FT

peeling
postproc

WKUKGOTWTXSTMITBESK
Figure 6: (2,3) [top] and (3,4) [bottom] nucleus decom-
position comparison for DFT (the one using Alg. 5 for
traversal) and FND (shown in Alg.8). Two main results:
(1) Traversal part of DFT is close to the peeling part,
(2) FND is able to keep the total runtime comparable to
the peeling part of DFT

(1) detecting the non-maximal T2,3 early to avoid traversal,
(2) using disjoint-set forest data structure to handle on-the-
fly computation.

5.3 (3, 4) nuclei
Table 5 and Figure 6 gives the comparison of all algorithms
on (3, 4)-nucleus decomposition, which has been shown to
give subgraphs with highest density and most detailed hi-
erarchy [42]. Results are similar to the (2, 3) case: FND is
the best and speedups are sharper. Naive algorithm could
not be completed in 2 days for any graph. DFT also could
not finish its computation on uk-2005 graph in that time.
Regarding the memory requirement, we see that DFT and
FND take at most ⇠10GB and ⇠3.5GB for the graphs in
our dataset. Also, |T3,4| and |c#(T ⇤

3,4)| are far from the upper
bounds, only of 3.9% and 2.5% on average. Overall, FND
outperforms all others. Figure 6 shows that total time of
FND is only 21% more than the peeling time of DFT and
only 2% slower on wiki-0611. Most significantly, FND is
1.53x faster than hypothetical limit (Hypo) of any possible
traversal-based (3, 4) nucleus decomposition algorithm.

6. CONCLUSION
In this work, we focused on computing the hierarchy of dense
subgraphs given by peeling algorithms. We first provided a
detailed review of previous work and pointed misconceptions
about k-core and k-truss decompositions. We proposed two
generic algorithms to compute any nucleus decomposition.
Our idea to leverage disjoint-set forest data structure for
hierarchy computation works well in practice. We further
improved the performance by detecting the subgraphs dur-
ing peeling process to avoid traversal. We also adapted and
implemented an existing idea for k-core decomposition hi-
erarchy, and showed its benefit. Overall, our algorithms
significantly outperformed the existing alternatives.
There are two open questions that might be worth to look

at. First is about the analysis. Nested structures given by
the resulting hierarchy only show the k-(r, s) nuclei. Instead
looking at the Tr,ss, which are many more than the k-(r, s)
nuclei, might reveal more insight about networks. This actu-
ally corresponds to the hierarchy-skeleton structure that our
algorithms produce. Second is regarding the performance.
We believe that adapting the existing parallel peeling algo-
rithms for the hierarchy computation can be helpful.

base

avoiding tra
versa

l

k-(2,3)

k-(3,4)

•  Construct subgraphs during peeling

We still traverse, any way to avoid?

16	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

What about other graph types?!
Bipartite networks?

•  Author-paper, word-document, actor-movie…

– Bipartite in nature, no triangle

•  Most project bipartite to unipartite

– Author-paper à Co-authorship

–  |E| explodes! 100x observed

–  Information lost!

•  Projections are not bijective

•  Find dense regions directly on bipartite graph!

17	

graph in bipartite networks. They used yet another defini-
tion of density which considers the number of (p, q)-bicliques
over all possible ones, and find the densest subgraph accord-
ingly. Our algorithms do not focus on finding only a single
subgraph that is perfectly dense. Instead, main motivation
is to find a detailed hierarchy that consists of many dense
subgraphs.

Bipartite community detection: Literature is quite
rich on community detection for unipartite networks. Cer-
tain metrics are adapted for bipartite networks to find high
quality communities. Guimera et al. [25] refined the modu-
larity, inspired from Newman’s influential paper [41]. Barber
and Clark [8] adapted the label propagation algorithm for
bipartite networks to optimize the modularity, which has
linear complexity in the number of edges, but gives com-
munities with moderate quality. On a related direction,
Larremore et al. [30] proposed a bipartite stochastic block
model for community detection in bipartite networks, which
needs the resulting number of communities a priori. More
information can be found in [5] where Alzahrani and Ho-
radam survey the community detection works on bipartite
networks. Main di↵erence of our work is that we do not
optimize any metric to find the best region. Our peeling al-
gorithms are deterministic, provide many dense subgraphs
with hierarchical relations, and only take the graph as input.

Peeling on bipartite networks: There have been some
attempts to adapt peeling algorithms or k-core [47] like sub-
graphs to the bipartite networks. Cerinsek and Batagelj [15]
adapted the generalized core idea [9] to bipartite networks.
They define the (p, q)-core with monotonic f and g functions
as a maximal union of the set of vertices u 2 U s.t. f(u) � p
and v 2 V s.t. g(v) � q. However, their definition is not
suitable to construct a hierarchy among (p, q)-cores since
it is not clear how to define comparison function for (p, q)
pairs. Another related work is done by Li et al. [34] where
they adapt the k-truss like definition for bipartite networks.
They insert artificial edges between vertex pairs that are
in the same side and sharing a neighbor. Then they apply
peeling algorithm on those artificial edges and their triangle
counts. This is actually identical to creating the projection,
and applying the k-truss decomposition using the triangle
counts [17].

6. EXPERIMENTS
We evaluate our algorithms and existing previous alterna-
tives on di↵erent kinds of real-world bipartite networks, ob-
tained from SNAP [32] and ICON [2]. condmat is the author-
paper network for the arXiv preprints in condensed mat-
ter physics between 1995 and 1999 [40]. dbconf is another
author-paper network that we constructed with the papers
and the authors from three top database conferences; VLDB,
SIGMOD, and ICDE [33]. github is the network between
users and repositories in the GitHub, released in the 2009
GitHub Contest [16]. marvel is occurrence relations between
the Marvel characters and the comic books [4]. IMDb links
actors and the movies they played in [1], and lastfm is the
network of users and the artists they listened in Last.fm on-
line music system [13]. Table 1 gives some important statis-
tics. In second to fourth columns, we show the number of
primary vertices, secondary vertices, and edges in each net-
work. We assume that the primary vertices are the ones

Table 1: Statistics for the real-world graphs.

network |U | |V | |E| |Ep| | | |4p|
condmat 16.7K 22.0K 58.6K 95.1K 70.5K 68.0K
dbconf 11.2K 8.9K 30.7K 84.8K 34.6K 95.7K
github 56.6K 123.3K 440.2K 44.5M 50.9M 962.6M
marvel 6.5K 12.9K 96.7K 336.5K 10.7M 3.3M
IMDB 1, 2M 419.7K 5.6M 157.5M 42.5M 312.1M
lastfm 2.1K 18.7K 92.8K 2.0M 13.4M 296.1M

that drive the connections. In the fifth column, number of
edges in the projected graph (Ep) with respect to the pri-
mary vertices are given (Definition 1). Last two columns
show the butterfly () counts in each bipartite network and
the triangle (4p) counts in the projected unipartite graph.
Algorithms are implemented in C++ and compiled using
gcc 5.2.0 at -O2 optimization level. All experiments are per-
formed on a Linux operating system running on a machine
with Intel Xeon Haswell E5-2698 2.30 GHz processor with
128 GB of RAM.
We compared the TipDecomposition (Algorithm 1) and

WingDecomposition (Algorithm 2) with the previous works
that find many dense subgraphs with an hierarchy on the bi-
partite graph or its unipartite (un)weighted projection:

• For the unweighted projection, we use two nucleus
decomposition algorithms which find the k-cores and
(2, 3)-nuclei (Definition 3 and 4). (2, 3)-nuclei has been
shown to be quite e↵ective to find dense regions [28,
46] with hierarchical relations.

• On the weighted projection, we find the fractional
k-cores [21]. It is the only peeling adaptation for weighted
networks, to the best of our knowledge.

• Regarding the bipartite data, Li et al. [34] proposed a
k-truss adaptation for bipartite networks, as explained
in the last part of previous section. Although the focus
is on the bipartite connections, their algorithm relies
on inserting edges between the vertices in the same set,
and compute the k-trusses on those new edges and new
triangles, which is essentially same as the (2, 3) nucleus
decomposition.

We report the bipartite subgraphs by their sizes in pri-
mary and secondary vertex sets, and the edge density, i.e.

|E|
|U|.|V | . For the nucleus decomposition and fractional k-core

algorithms, we find the nuclei/cores in the unipartite graph
(Gp), and then report the induced bipartite subgraphs using
(primary) vertices in those nuclei/cores.
We first compare the dense subgraph profiles, then intro-

duce some use cases that highlight some interesting findings
in the dbconf network, and finish by checking the runtime
results.

6.1 Dense subgraph profiles
We compare the size and density of bipartite subgraphs ob-
tained by k-wings, k-tips, k-cores, (2, 3)-nuclei, and frac-
tional k-cores. Figures 6 (condmat), 7 (dbconf), 8 (github),
9 (marvel), and also 1 (IMDb) (in Section 1) summarize the
results with informational captions where each dot is a bipar-
tite subgraph with at least 0.1 density and at most 10,000
vertices in either side. Primary and secondary vertex set
sizes are given on the x- and y-axis, respectively, and the
density is color coded. We omit the results for k-cores since

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Bipartite networks can be peeled
as well, if you devise a ‘triangle’

•  Focus on the smallest non-trivial structure

–  (2, 2)-biclique, or butterfly

•  Vertex-butterfly, edge-butterfly relations

–  k-tip: Each vertex has ≥ k butterflies
–  k-wing: Each edge has ≥ k butterflies

1-tip
3-tip

A

B

C

D

E

F

1-wing

A

B

C

2

3

1

D

E

F

5

6

4

2-wing

18	

those pairwise ties are independently represented and
processed which distorts the original information.

• Ambiguity: Projections are not bijective irrespective
of the conversion technique being used. For instance,
any two bicliques with equal number of primary ver-
tices result in the same unweighted projection.

• Edge inflation: Each secondary vertex in the bipar-
tite network with degree di results in a di-clique in the
projected graph. Thus, the number of edges in the pro-
jected graph can be as many as

P
v2V

�
dv
2

�
, whereas it

is only
P

v2V dv in the bipartite network, where V is
the set of secondary vertices. Increasing size reduces
the performance and also artificially boosts the clus-
tering coe�cients and local density measures in the
projected graph.

Motivated by the incapability and ine�ciency of projec-
tion approaches, we work directly on the bipartite graph to
discover the dense structures in a regularized way.

Why peeling?: k-core and k-truss decomposition algo-
rithms have been shown to be e↵ective to find the dense
regions and determining relations among them [28, 51, 24].
Furthermore, they are used as a building block to e�ciently
solve NP-Hard problems like maximal clique finding [7, 26].
However, they are not directly applicable for bipartite net-
works. k-core decomposition assumes that all the vertices
in the graph represent the same kind of entity, but it is
not the case in the bipartite graphs. Main focus is always
on one of the vertex sets (mostly primary) and there are
no edges among them. Regarding the k-truss, the prob-
lem is that there is no triangle. It has been shown that
the higher-order structures o↵er deeper insights for analyz-
ing real-world networks and detecting the dense regions in
a better way [46, 10, 28]. Thus, it is essential to define
new higher-order structures that capture the triangle-like
semantic in bipartite graphs, which would enable the peel-
ing adaptations.

1.2 Contributions
We introduce higher-order peeling algorithms for bipartite
graphs. Our contributions can be summarized as follows:

• Higher-order bipartite structures: We survey the
existing attempts to define higher-order structures in
bipartite graphs, and select the butterfly structure
(2,2-biclique) as the simplest super-edge motif. Build-
ing on that, we define the k-tip and k-wing subgraphs
based on the involvements of vertices and edges in but-
terflies, respectively.

• Butterfly peeling algorithms: In order to e�ciently
find all the k-tips and k-wings, we introduce butterfly
peeling algorithms. Our algorithms are iterative in
nature, and inspired by the degeneracy based decom-
positions for unipartite graphs. We also analyze their
complexity, and compare with the alternatives.

• Experimental evaluation: We evaluate our new def-
initions and algorithms on real-world networks. We
first find the dense subgraph profiles for our contri-
butions as well as the alternatives in the literature.
Figure 1 gives a glance of results on the movie-actor
network from IMDb. Our algorithms are able to ex-
tract denser subgraphs of di↵erent sizes. We also ap-
ply our algorithms on the author-paper network of

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

100

101

102

103

104

100 101 102 103

|V
|

|U|
(a) k-wing

100

101

102

103

104

100 101 102 103

|V
|

|U|
(b) (2, 3)-nucleus

Figure 1: Dense subgraph profile of IMDb network. Density is
color coded and size of each vertex partition is given by the x- and
y-axis. Our wing decomposition algorithm results in 36 bipartite
subgraphs that have at least 10 vertices in each side with � 0.9
edge density. Competitor algorithms that work on projections are
not able to give such dense bipartite structures.

top database conferences, and highlight the interest-
ing subgraphs and hierarchies we detect. Lastly, we
present the runtime performance of our peeling algo-
rithms and compare with the existing alternatives.

2. BACKGROUND
This section reminds the existing definitions about bipar-
tite networks and the peeling algorithms, and presents our
notations.
Let G = (U, V,E) be an undirected unweighted simple

(no loop, no multi-edge) bipartite graph. U is the set of
primary vertices, V is the set of secondary vertices, and E
is the set of edges s.t. 8(u, v) 2 E, u 2 U ^ v 2 V . N(u)
denotes the neighborhood of a vertex s.t. if u 2 U, N(u) =
{v | (u, v) 2 E} (similarly defined for v 2 V). G = (U, V,E)
is an (a,b)-biclique if 8u 2 U and 8v 2 V, 9(u, v) 2 E
and |U | = a, |V | = b. Here, we give two ways to convert the
bipartite graph to the unipartite graph, both of which are
also illustrated in Figure 2b:

Definition 1. Unweighted projection of G = (U, V,E)
is the unipartite graph Gp = (Vp, Ep) s.t. Vp = U,Ep =
{(u1, u2) | N(u1) \N(u2) 6= ?}.

Definition 2. Weighted projection of G = (U, V,E) is
the unipartite graph Gwp = (Vwp, Ewp) s.t. Vwp = U,
Ewp = {(u1, u2, w) | N(u1) \N(u2) 6= ? ^

w =
X

v2N(u1)\N(u2)

1
|N(v)| } [38, 39].

k-core [47, 35] and (2, 3)-nucleus [46, 28] definitions are as
follows:

3-core
2-(2,3)

2-(2,3)

(a) Examples for
3-core and 2-(2,3)
nucleus

A

B

C

D

A B

C

1/3+1/2

1/3 1/3
D1/2

A B

C D
unweighted

weighted

(b) Unweighted and weighted projections of
the toy bipartite graph

Figure 2: Illustrative examples for Definitions 1, 2, 3, and 4

those pairwise ties are independently represented and
processed which distorts the original information.

• Ambiguity: Projections are not bijective irrespective
of the conversion technique being used. For instance,
any two bicliques with equal number of primary ver-
tices result in the same unweighted projection.

• Edge inflation: Each secondary vertex in the bipar-
tite network with degree di results in a di-clique in the
projected graph. Thus, the number of edges in the pro-
jected graph can be as many as

P
v2V

�
dv
2

�
, whereas it

is only
P

v2V dv in the bipartite network, where V is
the set of secondary vertices. Increasing size reduces
the performance and also artificially boosts the clus-
tering coe�cients and local density measures in the
projected graph.

Motivated by the incapability and ine�ciency of projec-
tion approaches, we work directly on the bipartite graph to
discover the dense structures in a regularized way.

Why peeling?: k-core and k-truss decomposition algo-
rithms have been shown to be e↵ective to find the dense
regions and determining relations among them [28, 51, 24].
Furthermore, they are used as a building block to e�ciently
solve NP-Hard problems like maximal clique finding [7, 26].
However, they are not directly applicable for bipartite net-
works. k-core decomposition assumes that all the vertices
in the graph represent the same kind of entity, but it is
not the case in the bipartite graphs. Main focus is always
on one of the vertex sets (mostly primary) and there are
no edges among them. Regarding the k-truss, the prob-
lem is that there is no triangle. It has been shown that
the higher-order structures o↵er deeper insights for analyz-
ing real-world networks and detecting the dense regions in
a better way [46, 10, 28]. Thus, it is essential to define
new higher-order structures that capture the triangle-like
semantic in bipartite graphs, which would enable the peel-
ing adaptations.

1.2 Contributions
We introduce higher-order peeling algorithms for bipartite
graphs. Our contributions can be summarized as follows:

• Higher-order bipartite structures: We survey the
existing attempts to define higher-order structures in
bipartite graphs, and select the butterfly structure
(2,2-biclique) as the simplest super-edge motif. Build-
ing on that, we define the k-tip and k-wing subgraphs
based on the involvements of vertices and edges in but-
terflies, respectively.

• Butterfly peeling algorithms: In order to e�ciently
find all the k-tips and k-wings, we introduce butterfly
peeling algorithms. Our algorithms are iterative in
nature, and inspired by the degeneracy based decom-
positions for unipartite graphs. We also analyze their
complexity, and compare with the alternatives.

• Experimental evaluation: We evaluate our new def-
initions and algorithms on real-world networks. We
first find the dense subgraph profiles for our contri-
butions as well as the alternatives in the literature.
Figure 1 gives a glance of results on the movie-actor
network from IMDb. Our algorithms are able to ex-
tract denser subgraphs of di↵erent sizes. We also ap-
ply our algorithms on the author-paper network of

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

100

101

102

103

104

100 101 102 103

|V
|

|U|
(a) k-wing

100

101

102

103

104

100 101 102 103

|V
|

|U|
(b) (2, 3)-nucleus

Figure 1: Dense subgraph profile of IMDb network. Density is
color coded and size of each vertex partition is given by the x- and
y-axis. Our wing decomposition algorithm results in 36 bipartite
subgraphs that have at least 10 vertices in each side with � 0.9
edge density. Competitor algorithms that work on projections are
not able to give such dense bipartite structures.

top database conferences, and highlight the interest-
ing subgraphs and hierarchies we detect. Lastly, we
present the runtime performance of our peeling algo-
rithms and compare with the existing alternatives.

2. BACKGROUND
This section reminds the existing definitions about bipar-
tite networks and the peeling algorithms, and presents our
notations.
Let G = (U, V,E) be an undirected unweighted simple

(no loop, no multi-edge) bipartite graph. U is the set of
primary vertices, V is the set of secondary vertices, and E
is the set of edges s.t. 8(u, v) 2 E, u 2 U ^ v 2 V . N(u)
denotes the neighborhood of a vertex s.t. if u 2 U, N(u) =
{v | (u, v) 2 E} (similarly defined for v 2 V). G = (U, V,E)
is an (a,b)-biclique if 8u 2 U and 8v 2 V, 9(u, v) 2 E
and |U | = a, |V | = b. Here, we give two ways to convert the
bipartite graph to the unipartite graph, both of which are
also illustrated in Figure 2b:

Definition 1. Unweighted projection of G = (U, V,E)
is the unipartite graph Gp = (Vp, Ep) s.t. Vp = U,Ep =
{(u1, u2) | N(u1) \N(u2) 6= ?}.

Definition 2. Weighted projection of G = (U, V,E) is
the unipartite graph Gwp = (Vwp, Ewp) s.t. Vwp = U,
Ewp = {(u1, u2, w) | N(u1) \N(u2) 6= ? ^

w =
X

v2N(u1)\N(u2)

1
|N(v)| } [38, 39].

k-core [47, 35] and (2, 3)-nucleus [46, 28] definitions are as
follows:

3-core
2-(2,3)

2-(2,3)

(a) Examples for
3-core and 2-(2,3)
nucleus

A

B

C

D

A B

C

1/3+1/2

1/3 1/3
D1/2

A B

C D
unweighted

weighted

(b) Unweighted and weighted projections of
the toy bipartite graph

Figure 2: Illustrative examples for Definitions 1, 2, 3, and 4

those pairwise ties are independently represented and
processed which distorts the original information.

• Ambiguity: Projections are not bijective irrespective
of the conversion technique being used. For instance,
any two bicliques with equal number of primary ver-
tices result in the same unweighted projection.

• Edge inflation: Each secondary vertex in the bipar-
tite network with degree di results in a di-clique in the
projected graph. Thus, the number of edges in the pro-
jected graph can be as many as

P
v2V

�
dv
2

�
, whereas it

is only
P

v2V dv in the bipartite network, where V is
the set of secondary vertices. Increasing size reduces
the performance and also artificially boosts the clus-
tering coe�cients and local density measures in the
projected graph.

Motivated by the incapability and ine�ciency of projec-
tion approaches, we work directly on the bipartite graph to
discover the dense structures in a regularized way.

Why peeling?: k-core and k-truss decomposition algo-
rithms have been shown to be e↵ective to find the dense
regions and determining relations among them [28, 51, 24].
Furthermore, they are used as a building block to e�ciently
solve NP-Hard problems like maximal clique finding [7, 26].
However, they are not directly applicable for bipartite net-
works. k-core decomposition assumes that all the vertices
in the graph represent the same kind of entity, but it is
not the case in the bipartite graphs. Main focus is always
on one of the vertex sets (mostly primary) and there are
no edges among them. Regarding the k-truss, the prob-
lem is that there is no triangle. It has been shown that
the higher-order structures o↵er deeper insights for analyz-
ing real-world networks and detecting the dense regions in
a better way [46, 10, 28]. Thus, it is essential to define
new higher-order structures that capture the triangle-like
semantic in bipartite graphs, which would enable the peel-
ing adaptations.

1.2 Contributions
We introduce higher-order peeling algorithms for bipartite
graphs. Our contributions can be summarized as follows:

• Higher-order bipartite structures: We survey the
existing attempts to define higher-order structures in
bipartite graphs, and select the butterfly structure
(2,2-biclique) as the simplest super-edge motif. Build-
ing on that, we define the k-tip and k-wing subgraphs
based on the involvements of vertices and edges in but-
terflies, respectively.

• Butterfly peeling algorithms: In order to e�ciently
find all the k-tips and k-wings, we introduce butterfly
peeling algorithms. Our algorithms are iterative in
nature, and inspired by the degeneracy based decom-
positions for unipartite graphs. We also analyze their
complexity, and compare with the alternatives.

• Experimental evaluation: We evaluate our new def-
initions and algorithms on real-world networks. We
first find the dense subgraph profiles for our contri-
butions as well as the alternatives in the literature.
Figure 1 gives a glance of results on the movie-actor
network from IMDb. Our algorithms are able to ex-
tract denser subgraphs of di↵erent sizes. We also ap-
ply our algorithms on the author-paper network of

DENSITY: 0.0—-0.2—-0.4—-0.6—-0.8—-1.0

100

101

102

103

104

100 101 102 103

|V
|

|U|
(a) k-wing

100

101

102

103

104

100 101 102 103
|V
|

|U|
(b) (2, 3)-nucleus

Figure 1: Dense subgraph profile of IMDb network. Density is
color coded and size of each vertex partition is given by the x- and
y-axis. Our wing decomposition algorithm results in 36 bipartite
subgraphs that have at least 10 vertices in each side with � 0.9
edge density. Competitor algorithms that work on projections are
not able to give such dense bipartite structures.

top database conferences, and highlight the interest-
ing subgraphs and hierarchies we detect. Lastly, we
present the runtime performance of our peeling algo-
rithms and compare with the existing alternatives.

2. BACKGROUND
This section reminds the existing definitions about bipar-
tite networks and the peeling algorithms, and presents our
notations.
Let G = (U, V,E) be an undirected unweighted simple

(no loop, no multi-edge) bipartite graph. U is the set of
primary vertices, V is the set of secondary vertices, and E
is the set of edges s.t. 8(u, v) 2 E, u 2 U ^ v 2 V . N(u)
denotes the neighborhood of a vertex s.t. if u 2 U, N(u) =
{v | (u, v) 2 E} (similarly defined for v 2 V). G = (U, V,E)
is an (a,b)-biclique if 8u 2 U and 8v 2 V, 9(u, v) 2 E
and |U | = a, |V | = b. Here, we give two ways to convert the
bipartite graph to the unipartite graph, both of which are
also illustrated in Figure 2b:

Definition 1. Unweighted projection of G = (U, V,E)
is the unipartite graph Gp = (Vp, Ep) s.t. Vp = U,Ep =
{(u1, u2) | N(u1) \N(u2) 6= ?}.

Definition 2. Weighted projection of G = (U, V,E) is
the unipartite graph Gwp = (Vwp, Ewp) s.t. Vwp = U,
Ewp = {(u1, u2, w) | N(u1) \N(u2) 6= ? ^

w =
X

v2N(u1)\N(u2)

1
|N(v)| } [38, 39].

k-core [47, 35] and (2, 3)-nucleus [46, 28] definitions are as
follows:

3-core
2-(2,3)

2-(2,3)

(a) Examples for
3-core and 2-(2,3)
nucleus

A

B

C

D

A B

C

1/3+1/2

1/3 1/3
D1/2

A B

C D
unweighted

weighted

(b) Unweighted and weighted projections of
the toy bipartite graph

Figure 2: Illustrative examples for Definitions 1, 2, 3, and 4

Sariyuce & Pinar, arXiv: 1611.02756!

|U|! |U|!

|V|! |V|!

k-wing (2,3) nuclei!

A.	
 Erdem	
 Sarıyüce	
 3/2/17	

Streaming k-core decomposition

•  Considers a sliding-window scenario

– Count-based or time-based

•  Single edge insertion & removal algorithms

– Should have high processing rate

– Should be way faster than from-scratch solution

3/2/17	
 A.	
 Erdem	
 Sarıyüce	
 19	

10K edges processed per second

3/2/17	
 A.	
 Erdem	
 Sarıyüce	
 20	

A. E. Sarıyüce et al.

Fig. 9 Update rates of incremental insertion and removal algorithms
for synthetic graphs when varying the graph size from 215 to 224

40% of its insertions may result in touching purecores of
over 1 million edges. When inserting edges into graph based
on the Barabasi–Albert model (BA), our incremental algo-
rithm is only slightly better than the non-incremental one.
As we discussed earlier, in these graphs all vertices have the
same K value initially, resulting in subcore sizes that are
almost equal to the graph size. In this case, the incremental
algorithm does not provide much benefit on top of the base
one, yet brings additional computation overheads (such as
due to lazy arrays). As we will show shortly, this nature of
the BA graphs is not found in real-world graphs.

The removal algorithm scales for all three synthetic
graphs, where the relative throughput ranges from 259× to
1,321,200×. For the ER and BA graphs, the removal algo-
rithm scales better than the insertion one because it has much
lower cost (see Sect. 4.3). At large scales, we notice that the
use of incremental algorithms becomes even more critical,
since the cost of the baseline is linear in the size of the graph.

The scalability experiments indicate how good our incre-
mental algorithm can perform for different graph sizes when
there are k-core decomposition queries (read queries) inter-
spersed with edge insertion and removal (write queries). An
example scenario is when the updates are coming in a batch,
and the k-core decomposition is requested after each batch,
we say b =write/read, where b is the batch size. Taking the
RMAT graph with size of 224 vertices as an example, we
can see that if the write/read ratio (batch size) is less than
1,972,945 (the average relative throughput of one removal
and one insertion), it is better to use the incremental algo-
rithm than to compute the k-core decomposition from scratch
after inserting new edges and removing the oldest ones from
the graph (sliding window scenario).

Figure 9 shows the update rates, i.e., number of edges
processed per second, for our incremental insertion and
removal algorithms when the number of vertices in the graph
ranges from 215 to 224. For RMAT graphs, both insertion and
removal rates reach up to 205,000 and 87,000 updates/sec,

Fig. 10 Subcore algorithm relative throughput for real datasets when
compared to the baseline. Our incremental algorithm runs up to
14,000× faster than the non-incremental algorithm

and more importantly, update rates do not change when the
graph size increases. ER graphs have lower update rates for
both insertion and removal. Removal rates for ER graphs
stay stable as the graph size increases and insertion rates
only decrease by a factor of 3 (from 4478 to 1867) when
the graph size increases from 215 to 224. For BA graphs,
update rates for removal decreases from 33,547 to 25,222
when the graph size increases. Insertion rate has a similar
decreasing behavior with the graph size. However, the rates
are lower—starting from 1809 and decreasing to 62 when
the graph size gets bigger. The decreasing trend for the BA
graphs is due to the large purecore sizes that are proportional
to the graph size. Again, we will show that real-world graphs
do not exhibit this behavior.

6.3 Performance comparison

In this experiment, we analyze how our three incremental
algorithms perform when processing one edge removal and
one edge insertion (i.e., one sliding window operation) on
the real datasets described in Table 1. This helps us to see
whether the algorithm that is expected to give the best results,
traversal, shows the best performance for all the real datasets
we have.

Figure 10 shows the performance of the subcore algorithm
(Sect. 4.1) considering the average time taken by one graph
update. The performance is shown in terms of the relative
throughput provided by the incremental algorithm compared
to the non-incremental one. The relative throughputs vary
from6.2× to 14,000×. The datasets inwhich the incremental
algorithm performs the best are the eu-2005 and coPaper-
sCiteseer. Similar to the results obtained in the synthetic
graphs, the performance of the subcore algorithm benefits
from the high variability in the K value distribution of the
graph. The dataset in which the subcore algorithm performs
the worst is power. This is because 63.19% of the vertices

123

A. E. Sarıyüce et al.

Fig. 9 Update rates of incremental insertion and removal algorithms
for synthetic graphs when varying the graph size from 215 to 224

40% of its insertions may result in touching purecores of
over 1 million edges. When inserting edges into graph based
on the Barabasi–Albert model (BA), our incremental algo-
rithm is only slightly better than the non-incremental one.
As we discussed earlier, in these graphs all vertices have the
same K value initially, resulting in subcore sizes that are
almost equal to the graph size. In this case, the incremental
algorithm does not provide much benefit on top of the base
one, yet brings additional computation overheads (such as
due to lazy arrays). As we will show shortly, this nature of
the BA graphs is not found in real-world graphs.

The removal algorithm scales for all three synthetic
graphs, where the relative throughput ranges from 259× to
1,321,200×. For the ER and BA graphs, the removal algo-
rithm scales better than the insertion one because it has much
lower cost (see Sect. 4.3). At large scales, we notice that the
use of incremental algorithms becomes even more critical,
since the cost of the baseline is linear in the size of the graph.

The scalability experiments indicate how good our incre-
mental algorithm can perform for different graph sizes when
there are k-core decomposition queries (read queries) inter-
spersed with edge insertion and removal (write queries). An
example scenario is when the updates are coming in a batch,
and the k-core decomposition is requested after each batch,
we say b =write/read, where b is the batch size. Taking the
RMAT graph with size of 224 vertices as an example, we
can see that if the write/read ratio (batch size) is less than
1,972,945 (the average relative throughput of one removal
and one insertion), it is better to use the incremental algo-
rithm than to compute the k-core decomposition from scratch
after inserting new edges and removing the oldest ones from
the graph (sliding window scenario).

Figure 9 shows the update rates, i.e., number of edges
processed per second, for our incremental insertion and
removal algorithms when the number of vertices in the graph
ranges from 215 to 224. For RMAT graphs, both insertion and
removal rates reach up to 205,000 and 87,000 updates/sec,

Fig. 10 Subcore algorithm relative throughput for real datasets when
compared to the baseline. Our incremental algorithm runs up to
14,000× faster than the non-incremental algorithm

and more importantly, update rates do not change when the
graph size increases. ER graphs have lower update rates for
both insertion and removal. Removal rates for ER graphs
stay stable as the graph size increases and insertion rates
only decrease by a factor of 3 (from 4478 to 1867) when
the graph size increases from 215 to 224. For BA graphs,
update rates for removal decreases from 33,547 to 25,222
when the graph size increases. Insertion rate has a similar
decreasing behavior with the graph size. However, the rates
are lower—starting from 1809 and decreasing to 62 when
the graph size gets bigger. The decreasing trend for the BA
graphs is due to the large purecore sizes that are proportional
to the graph size. Again, we will show that real-world graphs
do not exhibit this behavior.

6.3 Performance comparison

In this experiment, we analyze how our three incremental
algorithms perform when processing one edge removal and
one edge insertion (i.e., one sliding window operation) on
the real datasets described in Table 1. This helps us to see
whether the algorithm that is expected to give the best results,
traversal, shows the best performance for all the real datasets
we have.

Figure 10 shows the performance of the subcore algorithm
(Sect. 4.1) considering the average time taken by one graph
update. The performance is shown in terms of the relative
throughput provided by the incremental algorithm compared
to the non-incremental one. The relative throughputs vary
from6.2× to 14,000×. The datasets inwhich the incremental
algorithm performs the best are the eu-2005 and coPaper-
sCiteseer. Similar to the results obtained in the synthetic
graphs, the performance of the subcore algorithm benefits
from the high variability in the K value distribution of the
graph. The dataset in which the subcore algorithm performs
the worst is power. This is because 63.19% of the vertices

123

•  What about k-truss?

–  Or other nucleus decompositions?

Sariyuce, Gedik, Jacques-Silva, Wu, Catalyurek, VLDB’13, VLDBJ!

Conclusion

•  Introduced the nucleus decomposition

–  Generalizes k-core and k-truss, and extend

–  Network analysis by the nucleus hierarchy

•  Hierarchy construction embedded into peeling

•  Bipartite networks

•  Incremental algorithms

–  Maintain dense subgraphs, temporal analysis

21	
 A.	
 Erdem	
 Sarıyüce	
 3/2/17	

References

•  A. E. Sariyuce, C. Seshadhri, A. Pınar, U. V. Catalyurek; Nucleus Decompositions for

Identifying Hierarchy of Dense Subgraphs, ACM Transactions on the Web (TWEB), to
appear

•  A. E. Sariyuce, B. Gedik, G. Jacques-Silva, K. Wu, U. V. Catalyurek; Incremental k-core
Decomposition: Algorithms and Evaluation, Very Large Data Bases Journal (VLDBJ),
25(3): 425-447, 2016

•  A. E. Sariyuce, A. Pinar; Fast Hierarchy Construction for Dense Subgraphs, International
Conference on Very Large Data Bases (VLDB), 2017, to appear arXiv: 1610.01961

•  A. E. Sariyuce, C. Seshadhri, A. Pınar, U. V. Catalyurek; Finding the Hierarchy of Dense
Subgraphs using Nucleus Decompositions, International World Wide Web Conference
(WWW), 2015 (AR: 14.1%) (Best Paper Runner-up)

•  A. E. Sariyuce, B. Gedik, G. Jacques-Silva, K. Wu, U. V. Catalyurek; Streaming
Algorithms for k-core Decomposition, International Conference on Very Large Data Bases
(VLDB), 2013 (AR: 22.7%)

•  A. E. Sariyuce, A. Pınar; Butterfly Effect: Peeling Bipartite Networks, arXiv: 1611.02756

http://sariyuce.com

22	
 3/2/17	
 A.	
 Erdem	
 Sarıyüce	

