
XtraPuLP
Partitioning Irregular Graphs at the Trillion-Edge Scale

George M. Slota1 Sivasankaran Rajamanickam2

Kamesh Madduri3 Karen Devine2

1Rensselaer Polytechnic Institute, 2Sandia National Labs, 3The Pennsylvania
State University

slotag@rpi.edu, srajama@sandia.gov, madduri@cse.psu.edu, kddevin@sandia.gov

SIAM CSE17 28 Feb 2017

1 / 23

Highlights

We present XtraPuLP, a multi-constraint
multi-objective distributed-memory partitioner based on
PuLP, a shared-memory label propagation-based graph
partitioner

Scales to 17 billion vertices and 1.1 trillion edges - several
orders-of-magnitude larger than any in-memory
partitioner is able to process; partitions these graphs
on 131,072 cores of Blue Waters in minutes

Cut quality within small factor of state-of-the-art

Code available:
https://github.com/HPCGraphAnalysis/PuLP -
interface also exists in Zoltan2 Trilinos package

Paper to appear in IPDPS 2017
2 / 23

Label Propagation

3 / 23

Label Propagation
Algorithm progression

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 23

Label Propagation
Algorithm progression

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 23

Label Propagation
Algorithm progression

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 23

Label Propagation
Algorithm progression

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 23

Label Propagation
Algorithm progression

Randomly label with n = #verts labels

Iteratively update each v ∈ V (G) with max per-label count over neighbors with ties broken randomly

Algorithm completes when no new updates possible; in large graphs, fixed iteration count

4 / 23

Label Propagation Partitioning
Prior Work

Multilevel methods:

[Wang et al., 2014] - label prop to coarsen, METIS to partition

[Meyerhenke et al., 2015] - label prop to coarsen, KaFFPaE to
partition

Benefits: High relative quality

Drawbacks: Overheads of multilevel framework

Single level methods:

[Ugander and Backstrom, 2013] - direct partition via constrained
label prop

[Vaquero et al.] - dynamic partitioning via constrained label prop

Benefits: Low overhead, high scalability

Drawbacks: Low relative quality

Our original PuLP implementation [Slota et al., 2014] showed quality
near the former and scalability higher than the latter. How do we
further scale for processing current and forthcoming massive-scale
datasets (e.g. brain graphs, web crawls, social networks)?

5 / 23

PuLP
Algorithm overview

XtraPuLP algorithm follows outline of original PuLP

Constrain: vertices and edges per part

Minimize: global cut and cuts per part

Iterate between satisfying various balance constraints and
objectives

Initialize p partitions
for Some number of iterations do

Label propagation constraining vertices per part
Refine partitions to minimize edge cut

for Some number of iterations do
Label propagation constraining edges and cut edges per part
Refine partitions to minimize edge cut

6 / 23

XtraPuLP

7 / 23

Challenges
Partitioning at the Trillion Edge Scale

No longer can assume graph or part assignments fit in
shared-memory; graph structure and part assignments
need to be fully distributed

MPI communication methods need to be as efficient as
possible; up to O(m) data exchanged all-to-all among
O(nprocs) tasks during each of O(100) iterations

Parallelization methodology should account for degree
skew and imbalance of large irregular graphs

Real-time tracking of updates infeasible. At no point does
any processing task have accurate global part
information. Therefore, need to carefully control part
assignment updates as tasks independently relabel their
owned vertices

8 / 23

Implementation Methodology

Storage and communication: we use the HPCGraph
Framework [Slota et al., 2016] as a baseline; supplies
efficient and scalable 1D graph representation

Modify and optimize code for PageRank-like processing
pattern; information is pulled in - i.e. vertex v updates its
part assignment P (v) to reflect some optimal given
known neighborhood information combined with assumed
global information

MPI+OpenMP parallelization; everything is done
thread-parallel except for MPI calls

But still need to address: How to control label
propagation updates to balance communication
requirements/accuracy/quality/etc?

9 / 23

Controlling Part Assignment

Our weighted label propagation algorithms update part
assignments P (v) using a weighting function W (p),
where v is more likely to join part p if p is underweight

P (v) = maxp(W (p)× |u ∈ N(v)| where P (u) = p)

W (p) ∝ max(Smax − S(p), 0)

Algorithms require knowledge of global part sizes S(p) for
balance/refinement - real-time global updates not feasible
Instead, we approximate current sizes as A(p) using
known global sizes, and per-task changes observed C(p)
scaled by dynamic multiplier mult

A(p) = S(p) +mult × C(p)
10 / 23

Controlling Part Assignment - mult

Consider mult to be the inverse of each task’s share of
allowed updates before part p becomes imbalanced
A larger mult means each task will compute A(p) to be
relatively larger, less likely to assign new vertices to p
E.g. if mult = numTasks, each task can add
Smax−S(p)cur
numTasks

new vertices/edges/cut edge to part p
We use two parameters X and Y to dynamically adjust
mult as iterations progress; Y controls initial size of mult
and X controls final size of mult

mult ← nprocs × ((X − Y)(
Itercur

Itertot
) + Y)

We use Y = 0.25 and X = 1.0; each task can alter a part by 4× its
share of updates initially but only by 1× its share finally

11 / 23

XtraPuLP using PageRank-like Algo Pattern

1: procedure PuLPAlg(Graph G(V,E), Parts P) . Task Parallel
2: S,C,A,mult← init(P) . Initialize per-task part size data
3: 〈S〉 ← AllToAllExchange(S) . Initial global part sizes
4: Q← V
5: while Q 6= ∅ or Itercur < Itertot do
6: for all v ∈ Q do . Thread Parallel
7: for all 〈v, u〉 ∈ E do
8: if P (v) = p← update() then
9: C(p)← update() . Atomic update

10: A(p)← update()
11: Qnext ← 〈v, P (v)〉
12: 〈P 〉 ← AllToAllExchange(Qnext) . Update ghost parts
13: 〈S〉 ← AllToAllExchange(C) . Update part sizes
14: C ← 0, A← S . Reset per-task changes
15: mult ← update()
16: Qnext ← ∅
17: return D

12 / 23

Experimental Results

13 / 23

Test Environment and Graphs

Test systems:
Blue Waters: 2x AMD 6276 Interlagos, 16 cores, 64 GB
memory, up to 8192 nodes
Compton: 2x Intel Xeon E5-2670 (Sandy Bridge), 16 cores,
64 GB memory, up to 16 nodes

Test graphs:
UF Sparse Matrix, 10th DIMACS, SNAP, Max Planck Inst.,
Koblenz, Web Data Commons 2012 (WDC12) - social
networks, web crawls, and meshes up to 128 billion edges
R-MAT, Erdős-Rényi (ER), High Diameter (HD) - up to 1.1
trillion edges

Test Algorithms:
PuLP- multi objective and multi constraint
XtraPuLP- multi objective and multi constraint
ParMETIS - single objective and multi constraint
KaHIP - single objective and single constraint

14 / 23

Large Scale - Strong and Weak Scaling
256 - 2048 nodes of Blue Waters

0

200

400

600

256 512 1024 2048
Number of Nodes

P
ar

ti
ti

on
in

g
T

im
e

(s
)

RMAT RandER RandHD WDC12

Strong scaling on 256 parts of
WDC12, R-MAT, ER, HD (left)

Weak scaling on random graphs -
222 vertices per node (below)

RMAT RandER RandHD

0

100

200

300

400

8 32 128 512 2048 8 32 128 512 2048 8 32 128 512 2048

Number of Nodes

P
ar

ti
ti

on
in

g
T

im
e

(s
)

AvgDegree 16 32 64

15 / 23

Trillion Edge Tests

Also attempted R-MAT, Erdős-Rényi, and high diameter
graphs with 234 (17 billion) vertices and 240 (1.1 trillion)
edges

Ran on 8192 nodes of Blue Waters

Erdős-Rényi partitioned in 380 seconds, high diameter in
357 seconds

R-MAT graph failed; 234 vertex 239 edge R-MAT graph
completed in 608 seconds

No scalability bottlenecks for less skewed graphs; 1D
representation limits further scalability for highly irregular
graphs

16 / 23

Application Performance
Partitioning WDC12

At the large scale, how does increasing processor count affect
partitioning quality for a fixed number of parts?

Edge cut ratio stays below 0.07; vs. 0.16 for vertex block and over
0.99 for random

Note: only competing methods at this scale are block and
random/hash partitioning

0.0

0.5

1.0

256 512 1024 2048

Number of Nodes

M
ax

 E
d

g
e

Im
b

al
an

ce

0.00

0.02

0.04

0.06

256 512 1024 2048

Number of Nodes

E
d

g
e

C
u

t
R

at
io

0.000

0.001

0.002

256 512 1024 2048

Number of Nodes
M

a
x
 C

u
t

R
a

ti
o

17 / 23

Application Performance
HPCGraph benchmark - https://github.com/HPCGraphAnalysis/HPCGraph

6 applications from HPCGraph- HC: harmonic centrality, LP:
label propagation, SCC: strong connectivity, WCC: weak
connectivity, PR: PageRank, KC: K-core
4 partitioning strategies - Edge block, vertex block, random,
XtraPuLP

0

500

1000

1500

2000

EdgeBlock Random VertBlock XtraPuLP

Partitioning Strategy

P
ar

ti
ti

on
in

g
T

im
e

(s
)

HC

KC

LP

PR

SCC

WCC

XtraPuLPtime

18 / 23

Comparisons to Prior Work
Performance comparisons at smaller scale

Multi-Constraint Scenario: Computing 16 parts of 26 test graphs
on 16 nodes, XtraPuLP is 2.5x faster than PuLP and 4.6x
faster than ParMETIS; on a single node, PuLP is 1.5x faster than
XtraPuLP
Single-Constraint Scenario: Computing 2-256 parts of test
graphs on a single node, XtraPuLP is about 1.36x slower than
PuLP, 6.8x faster than ParMETIS and 15x faster than KaHIP; on
more nodes, speedups versus ParMETIS and KaHIP are consistent

lj rmat_22 uk−2002

0

100

200

300

400

2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12

8
25

6 2 4 8 16 32 64 12
8

25
6

Number of Parts

E
xe

cu
ti

on
 T

im
e

(s
)

Partitioner XtraPuLP PuLP ParMETIS KaHIP

19 / 23

Comparisons to Prior Work
Quality comparisons at smaller scale

Multi-Constraint Scenario: XtraPuLP is within 10% of PuLP
and ParMETIS for both edge cut and max cut objectives

Single-Constraint Scenario: XtraPuLP cuts 8% more edges
than PuLP, 33% more than ParMETIS, and 50% more than KaHIP

lj rmat_22 uk−2002

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64 12
8

25
6 2 4 8 16 32 64 12

8
25

6 2 4 8 16 32 64 12
8

25
6

Number of Parts

E
d

ge
 C

u
t

R
at

io

Partitioner XtraPuLP PuLP ParMETIS KaHIP

20 / 23

What about X,Y parameters?

Edge balance, edge cut, max per-part cut; values
averaged across all small scale experiments; darker is
worse, lighter is better
Ideally, need to select values along threshold where lighter
colors overlap to get both quality and balanced partitions
Our values of X = 1.0, Y = 0.25 are selected empirically
based on our experiments

0.
0

0.
25 0.

5
0.

75 1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

X Value

0.0
0.25
0.5
0.75
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Y
 V

al
ue

0.
0

0.
25 0.

5
0.

75 1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

X Value

0.0
0.25
0.5
0.75
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Y
 V

al
ue

0.
0

0.
25 0.

5
0.

75 1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

X Value

0.0
0.25
0.5
0.75
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Y
 V

al
ue

21 / 23

Acknowledgments

Sandia and FASTMATH
This research is supported by NSF grants CCF-1439057 and the
DOE Office of Science through the FASTMath SciDAC Institute.
Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Blue Waters Fellowship
This research is part of the Blue Waters sustained petascale
computing project, which is supported by the National Science
Foundation (awards OCI-0725070, ACI-1238993, and
ACI-1444747) and the state of Illinois. Blue Waters is a joint effort
of the University of Illinois at Urbana Champaign and its National
Center for Supercomputing Applications.

Kamesh Madduri’s CAREER Award
This research was also supported by NSF grant ACI-1253881.

22 / 23

Conclusions
and future work

XtraPuLP scales to orders-of-magnitude larger graphs than prior
art

Efficient at all scales; quality comparable to state-of-the-art for
multiple network types

XtraPuLP code available:
https://github.com/HPCGraphAnalysis/PuLP

Interface also exists in Zoltan2 Trilinos package:
https://github.com/trilinos/Trilinos

Future work:

Explore 2D layouts for further scaling
Optimize communication and update methods
Explore techniques to improve quality

For papers, visit: www.gmslota.com, or email: slotag@rpi.edu

23 / 23

Bibliography I

Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel graph partitioning for complex networks. In
Proc. Int’l. Parallel and Distributed Processing Symp. (IPDPS), 2015.

G. M. Slota, K. Madduri, and S. Rajamanickam. PuLP: Scalable multi-objective multi-constraint partitioning for
small-world networks. In Proc. IEEE Int’l. Conf. on Big Data (BigData), 2014.

G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of complex graph analysis in distributed memory:
Implementation and optimization. In Proc. IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS), 2016.

J. Ugander and L. Backstrom. Balanced label propagation for partitioning massive graphs. In Proc. Web Search
and Data Mining (WSDM), 2013.

Luis Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. xDGP: A dynamic graph processing
system with adaptive partitioning. arXiv: 1309.1049 [cs.DC], 2013.

Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a billion-node graph. In Proc. Int’l. Conf.
on Data Engineering (ICDE), 2014.

24 / 23

