Movement of Vertices Across Communities in Dynamic Networks

Sriram Srinivasan

In Collaboration With Sanjukta Bhowmick University of Nebraska at Omaha SIAM CSE2017 March 02 2017

Community Detection

- Communities are groups of vertices that are more tightly connected to each other than other vertices in the network
- Numerous methods/metrics exist
 - Modularity (more connections than random)
 - Conductance (less connections between in a communities)
 - Random Walk (vertices most often visited are in a community)

Community Detection in Dynamic Networks

- As the structure of the network changes, the communities can also alter
- Work has been done on updating communities without recomputing
 - <u>Fast community detection for dynamic complex networks</u> Bansal, Bhowmick, Paymal 2010.
 - <u>Tracking local communities in streaming graphs with a dynamic</u> <u>algorithm</u> Zakrzewska, Bader 2016
- Our focus is on identifying a-priori the "fickle" vertices that are more likely to leave the community

Challenges

- Most community detection metrics are based on the entire network—not per vertex
- Due to resolution limit smaller communities are absorbed into larger ones
- The optimum value of metric depends on the network size, not quality of community
- We require a metric that is vertex-based and sensitive to the changes in network structure

Total Internal connections > maximum external connections to any one of the external communities

Modularity, Conductance consider total external connections

Internal neighbors should be highly connected => high clustering coefficient among internal neighbors

Modularity, Conductance do not consider clustering coefficient

Permanence

Perm (v) =
$$\left[\frac{I(v)}{E_{\max}(v)} \times \frac{1}{D(v)}\right] - (1 - C_{in}(v))$$

I(v)=internal deg of v D(v)=degree of v $E_{max}(v)=Max \text{ connection to an external community}$ $C_{in}(v)=Clustering \text{ coefficient of internal neighbors}$

Permanence of entire network=
$$\frac{1}{N} \overset{\circ}{\underset{v=1:N}{\otimes}} Perm(v)$$

Find community by maximizing permanence of the network

T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, S. Bhowmick, On the permanence of vertices in network communities. KDD 2014

Properties of Permanence

- Vertex-based.
 - Computes the "belongingness" of a vertex in a community
- Uniform Scale.
 - Ranges from -1 (vertex placed in completely wrong community) to 1 (vertex in a clique).
- Relatively independent of network size
- Handles Resolution Limit
- Is Sensitive to Changes

Test Suites with Ground Truth

- Real World Networks
 - Network of Inter-college Football
 - Network of Indian Railways
 - Network of Co-authorship in Technical Articles

- Synthetic Networks
 - LFR networks using different values of mixing parameter (µ)
 - Lower value of μ indicates tighter community structure

Experimental Results

Method	LFR	LFR		Football	Railway	Coauthors	
	(µ=0.1)	(µ=0.3)	/ (µ=0.6)				
Louvain	0.02	0.00	-0.75	0.02	0.14	0.00	
FastGrdy	0.00	0.87	0.02	0.01	0.37	0.14	
CNM	0.14	0.40	-0.13	0.30	0.20	0.05	
WalkTrap	0.00	0.00	-0.50	0.02	0.03	0.03	
Infomod	0.06	0.08	-0.20	0.01	0.19	-0.04	
Infomap	0.00	0.00	-0.72	0.00	0.02	-0.02	

Differences of our algorithm with the other algorithms averaged over all 6 different validation measures

(High Value means Max Perm was more accurate)

LFR (μ = 0.1) vs. LFR (μ = 0.6)

For networks with bad community structure ground truth may be biased. Permanence can capture this

Co-Authorship Results

- By inspecting the meta-data [keywords; subgroups] we find that permanence detects the sub-communities
- Main Communities as per Ground Truth
 - Algorithms and Theory;
 - Databases
- Communities obtained by maximizing permanence have these groups
 - Theory of Computation, Formal Methods, Information and Coding Theory, Computational Geometry, Data Structure
 - Models, Query Optimization, Database Languages, Storage,
- Permanence can detect smaller community, overcoming resolution limit.

Sensitivity Under Perturbation

Each row represents a different methods of swapping vertices across two communities

Permanence is robust to small changes and sensitive to large changes

Core-Periphery and Permanence

- Permanence can be used to identify whether the vertex is at the core or the periphery of its community
- Farness Centrality: Mean shortest path of a vertex to all other vertices in its community
- Higher permanence=> Low Farness Centrality=> Closer to the core

Can move outer vertices to other communities with just one edge addition Adding edge 4-28 moves it to blue community

Can move external vertices to communities with just one edge addition Adding edge 59-44 moves it to red community

Random insertion of edges in the network does not change membership of red, blue, green communities

Conclusions

- We introduce permanence—a metric that measures by how much a vertex belongs to a community
- Permanence is sensitive to changes in the community structure
- Permanence maps to the core-periphery structure of the communities
 - higher permanence vertices are at the core, lower permanence at the periphery
- Due to this phenomena, it should be easier to move lower permanence (periphery) vertices to other communities
- We have seen in our initial experiments, that this hypothesis is true for small networks with well defined communities'—dolphin, karate
 - Targeted change leads to correct movement of vertices to desired communities
 - Random changes do not change the communities significantly
- Next steps: to test on larger networks, and more fuzzy communities.