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Community Detection

• Communities are groups of vertices that are more 
tightly connected to each other than other 
vertices in the network

• Numerous methods/metrics exist
• Modularity (more connections than random)
• Conductance (less connections between in a communities) 
• Random Walk (vertices most often visited are in a community) 



Community Detection in 
Dynamic Networks

• As the structure of the network changes, the communities can 
also alter

• Work has been done on updating communities without 
recomputing
• Fast community detection for dynamic complex networks Bansal, 

Bhowmick, Paymal 2010.
• Tracking local communities in streaming graphs with a dynamic 

algorithm Zakrzewska, Bader 2016

• Our focus is on identifying a-priori the “fickle” vertices 
that are more likely to leave the community

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=MegF9mYAAAAJ&citation_for_view=MegF9mYAAAAJ:Y0pCki6q_DkC
http://www.cc.gatech.edu/~bader/papers/xxx.html


Challenges

• Most community detection metrics are based on the 
entire network—not per vertex

• Due to resolution limit smaller communities are 
absorbed into larger ones

• The optimum value of metric depends on the network 
size, not quality of community

• We require a metric that is vertex-based and 
sensitive to the changes in network structure
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Total Internal connections > maximum external connections to 
any one of the external communities

Modularity, Conductance
consider total external connections
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Internal neighbors should be highly connected => 
high clustering coefficient among internal neighbors

Modularity, Conductance do not 
consider clustering coefficient



Permanence

I(v)=internal deg of v
D(v)=degree of v
Emax(v)=Max connection to an external community
Cin(v)=Clustering coefficient of internal neighbors

I(v)=4,  D(v)=7, 
Emax(v)=2, Cin(v)=5/6
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Find community by maximizing permanence of the network
T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, S. Bhowmick, On the permanence of 
vertices in  network communities. KDD 2014



Properties of Permanence 
• Vertex-based. 

• Computes the “belongingness” of a vertex in a community

• Uniform Scale. 
• Ranges from -1 (vertex placed in completely wrong community) to 1 

(vertex in a clique).

• Relatively independent of network size

• Handles Resolution Limit

• Is Sensitive to Changes 



Test Suites with Ground Truth

• Real World Networks
• Network of Inter-college Football

• Network of Indian Railways

• Network of Co-authorship in Technical Articles

• Synthetic Networks
• LFR networks using different values of mixing parameter (μ)

• Lower value of μ indicates tighter community structure



Experimental Results
Method LFR

(µ=0.1)

LFR

(µ=0.3)

LFR

(µ=0.6)

Football Railway Coauthors

Louvain 0.02 0.00 -0.75 0.02 0.14 0.00

FastGrdy 0.00 0.87 0.02 0.01 0.37 0.14

CNM 0.14 0.40 -0.13 0.30 0.20 0.05

WalkTrap 0.00 0.00 -0.50 0.02 0.03 0.03

Infomod 0.06 0.08 -0.20 0.01 0.19 -0.04

Infomap 0.00 0.00 -0.72 0.00 0.02 -0.02

Differences of our algorithm with the other algorithms averaged over all 6 different  
validation measures 

(High Value means Max Perm was more accurate)



LFR (µ = 0.1) vs. LFR (µ = 0.6) 

LFR (µ = 0.1) LFR (µ = 0.6) 

For networks with bad community structure ground truth may be 
biased. Permanence can capture this



Co-Authorship Results
• By inspecting the meta-data [keywords; subgroups] we find that permanence 

detects the sub-communities

• Main Communities as per Ground Truth
• Algorithms and Theory; 
• Databases

• Communities obtained by maximizing permanence have these groups
• Theory of Computation, Formal Methods, Information and Coding Theory, 

Computational Geometry, Data Structure
• Models, Query Optimization, Database Languages, Storage, 

• Permanence can detect smaller community, overcoming resolution limit.



Sensitivity Under Perturbation

Permanence is robust to small changes and sensitive to large changes

Each row represents a different methods of swapping vertices across two communities



Core-Periphery Structure 
of Communities

• Permanence can be used to identify whether the vertex is at the 
core or the periphery of its community

• Farness Centrality: Mean shortest path of a vertex to all other 
vertices in its community

• Higher permanence=> Low Farness Centrality=> Closer to the 
core

Core-Periphery and Permanence

Vertices with lower permanence are easier to remove from communities 



Can move outer vertices to 
other communities with just 
one edge addition
Adding edge 4-28 moves it 
to blue community

Can move external vertices 
to  communities with just 
one edge addition
Adding edge 59-44 moves it 
to red community

Random insertion of edges in 
the network does not 
change membership of red, 
blue, green communities



Conclusions
• We introduce permanence—a metric that measures by how much a vertex belongs to 

a community

• Permanence is sensitive to changes in the community structure

• Permanence maps to the core-periphery structure of the communities

• higher permanence vertices are at the core, lower permanence at the periphery

• Due to this phenomena,  it should be easier to move lower permanence (periphery) 
vertices to other communities

• We have seen in our initial experiments, that this hypothesis is true  for small 
networks with well defined communities’—dolphin, karate

• Targeted change leads to correct movement of vertices to desired communities

• Random changes do not change the communities significantly

• Next steps: to test on larger networks, and more fuzzy communities.


