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Minimum  Weighted Spanning Tree 
(MST)
• Select a subset of edges from an undirected weighted graph 

(V,E), such that 

• (i) all the vertices are connected 

• (ii) the sum of the total edges is minimized

• Sequential Algorithms: Kruskal’s O(ElogV)  Prim’s (E+VlogV)

• Parallel Algorithms: Boruvka’s. 

• Applications: Cluster Analysis, Circuit Design, Approximating TSP

• Our goal is to develop a parallel algorithm for updating MST 
as new edges are added and old edges are deleted.



Graph Sparsification

• Issue: Massive size of the graphs makes it difficult to 
identify which portions to update

• Solution: Use sparsification to identify only the edges 
that are important to the property under 
consideration
• Key Edges: Edges pertaining to the property (here edges in 

MST)

• Remainder Edges: Remaining edges (here everything but MST)
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Insertion Operation

• Edge (u,v) with weight W to be inserted

• Find path in MST from vertex u to 
vertex v

• Find the maximum weighted edge (x,y)  
in the path (wt=maxW)

• If (maxW > W):  

• Add (u,v) to MST; Delete (x,y)

• Else: 

• Add (u,v) to graph but not MST
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Add edges (A,F:1) and (A,D:3)

Heaviest Edge in Path A—F in MST is B-D:2 or E-F:2
Replace either with A-F:1

Heaviest Edge in Path A—D in MST is B-D:2
Do not replace A-D:3
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Deletion  Operation

• Deletion Operation
• Delete Edge (u,v) from the 

graph

• Reconnect the tree (if 
possible) by finding minimum 
weighted edge connecting 
the two parts.

Deleted edge (A,B:1) from MST
Deleted edge  (A,C:3) from remainder
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2 Deleted edge A-B:1
Added C-F:2 from remainder to rejoin the tree
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Issues with Insertion-I

• Finding the path between (u,v) for insertion—worst 
case complexity O(V+E)

• Complexity of simply re-doing the  MST  O(ELogV)

• Therefore over multiple insertions time to update will 
be more than time to re-compute MST

• Solution: Store the paths (or maximum weighted 
edges) between vertex pairs.  Requires O(V2) storage



Finding Maximum Weighted Edges

• Find path from a designated root to all other vertices

• Mark the edges that have maximum weight in these 
paths

• Storage O(V) ; Time O(V+E)
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Root D

D:B  (D-B)3
D:C  (D-B) 3
D:A  (D-B) 3
D:E  (D-E) 2
D:F  (E-F) 4



Finding Maximum Weighted Edges
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Case 1: (F:C) Max Weight Edges are 
Different
Max Weight from F:D (E-F) 4
Max Weight from C:D (B-D) 3

Pick the highest weight edge (E-F) 4

Case 2: (A:C) Max Weight Edges are Same
Max Weight from A:D (B-D) 3
Max Weight from C:D (B-D) 3

Find path from A-C and then find max 
weighted edge B:C 2

If we keep track of the parent, the 
complexity of this at most O(h); 
h=height of the tree



Selection of Root

• We need to select the root such that height of tree is 
minimized

• Assume we have no control over the original MST

• Find the longest path in the tree.  Then select the 
vertex in the center of the path as the root

• Best Case O(logkV); k=average branching

• Worst Case O(V/2) but 50% chance that the max 
weighted edges will be different



Issues with Insertion-II

Inserting edges in parallel can lead to cycles
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Case 1:  Edges 1-5 and 1-6 are inserted in parallel
Both find 3-4 as the edges to be deleted
If added without synchronization creates a cycle

Solution: Mark 3-4 with id of edge replacing it. 
Only one id is possible
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Case 2:  Edges 1-5 and 1-6 are inserted in parallel
1-5 replaces 2-3 and  2-6 replaces 4-5
If added without synchronization creates a cycle

Solution: 2-3 and 4-5 must have the same weight.  
Break ties by selecting edges with lower vertex ids.
Reduces to Case 1



Issues with Deletion

• Deletion can be done in parallel by simply marking the 
edge as deleted

• Finding edge to recombine the broken trees is 
expensive

• May need to search all remainder edges O(E)

• Solution: Number of deletions in MST is less (4-5% of 
# of changes). Use Boruvka to update

• Keep remainder edges in min-heap 

• Reduce the number of edges to search by using 
sparsification tree 



Sparsification Tree
• Introduced by Eppstein in 1997

• Sparsification—a technique for speeding up dynamic graph algorithms by 
Eppstein et. al. JACM 1997

• Divided the edges of the graph into a binary tree

• Each node in the tree represents a subgraph

C

D E

F

A

1
B

2

1 2

G
H

2

3

G-H

C-E, C-F

D-E, D-G

A-C

B-C

B-D

F-H

E-H

A-B E-F

1

CB

D E

F

A

1 1
3

2

1

1

2

2

G
H

2

3
3

3



Sparsification Tree

• Sparsification tree reduce the 
number of edges we need to 
consider

• For Deletion (u,v)
• Only consider edges from the from the 

node where (u,v) are in the same 
component to leaf

• Delete (B-D): Search in nodes 5,1,2

• For Insertion (u,v)
• Only traverse the subgraph from the 

node where (u,v) are in the same 
component to leaf

• Insert (G-F): Traverse through 
subgraph at nodes 6,3,4
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Putting It All Together
• Input: MST, Original Graph, Set of Changed Edges
• Output: Updated MST
• Create Sparsification Tree 
• Place key edges and remainder edges in sparsification

tree 
• Select root of MST and find distances of all vertices
• Each changed edge is processed in parallel

• Insertion (u,v)
• Find maximum weighted edge in path from (u,v)
• Replace as necessary

• Deletion (u,v)
• Delete edge from MST
• Rejoin by checking remainder edges



Experimental Setup

• Datasets
• Experiments on random graphs created using RMAT

• Vertices: 2^18—2^21 

• Edges: 8XVertices

• Machine
• Tusker at Holland Computing Centre

• 6,784 cores interconnected with Mellanox QDR Infiniband
along with 523TB of Lustre storage. Each compute node has 
256 GB RAM and 4 Opteron 6272 (2.1 GHz) processors. 

• Shared memory implementation using OpenMP



Scalability Results
(repeated traversals-no rooted tree)

10K changes insertions and deletions mixed

5K changes insertions and deletions mixed

Time in seconds



Scalability Results
(Rooted Tree)

Time to create rooted 
tree= 0.20 seconds 
(sequential)

Total time  =.20 +time to 
update

Rooted Traversal

1 .57 654.91

2 .41 317.6

4 .32 175.4

8 .27 104.4



Conclusions

• The first parallel algorithm for updating MST

• Sparsification tree reduces amount of traversal

• Rooted tree method much faster than traversal—but need 
to make rooting parallel

• We can now handle updates for weighted trees. 

• In lookout for other interesting properties to update 

• Current code available at https://graphsparsification.herokuapp.com/

• Come to the Poster tomorrow
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