
UPDATING MINIMUM
WEIGHTED SPANNING TREES

IN PARALLEL

Sriram Srinivasan

In Collaboration With

Sanjukta Bhowmick and Sajal Das

University of Nebraska at Omaha

Missouri University of Science and Technology
SIAM CSE2017

Feb 28 2017

Minimum Weighted Spanning Tree
(MST)
• Select a subset of edges from an undirected weighted graph

(V,E), such that

• (i) all the vertices are connected

• (ii) the sum of the total edges is minimized

• Sequential Algorithms: Kruskal’s O(ElogV) Prim’s (E+VlogV)

• Parallel Algorithms: Boruvka’s.

• Applications: Cluster Analysis, Circuit Design, Approximating TSP

• Our goal is to develop a parallel algorithm for updating MST
as new edges are added and old edges are deleted.

Graph Sparsification

• Issue: Massive size of the graphs makes it difficult to
identify which portions to update

• Solution: Use sparsification to identify only the edges
that are important to the property under
consideration
• Key Edges: Edges pertaining to the property (here edges in

MST)

• Remainder Edges: Remaining edges (here everything but MST)

CB

D E

F

A

1 3
1

2

1

3

2

2
D

C

E

F

A

1

B

2

1 2

1

Insertion Operation

• Edge (u,v) with weight W to be inserted

• Find path in MST from vertex u to
vertex v

• Find the maximum weighted edge (x,y)
in the path (wt=maxW)

• If (maxW > W):

• Add (u,v) to MST; Delete (x,y)

• Else:

• Add (u,v) to graph but not MST

C

D E

F

A

1

B

2

1 2

1

Add edges (A,F:1) and (A,D:3)

Heaviest Edge in Path A—F in MST is B-D:2 or E-F:2
Replace either with A-F:1

Heaviest Edge in Path A—D in MST is B-D:2
Do not replace A-D:3

1

CB

D E

F

A

1 3
1

2

1

3

2

2

1
3

Deletion Operation

• Deletion Operation
• Delete Edge (u,v) from the

graph

• Reconnect the tree (if
possible) by finding minimum
weighted edge connecting
the two parts.

Deleted edge (A,B:1) from MST
Deleted edge (A,C:3) from remainder

C

D E

F

A

B

2

1

2

1

2 Deleted edge A-B:1
Added C-F:2 from remainder to rejoin the tree

CB

D E

F

A

1 3
1

2

1

3

2

2

1
3

Issues with Insertion-I

• Finding the path between (u,v) for insertion—worst
case complexity O(V+E)

• Complexity of simply re-doing the MST O(ELogV)

• Therefore over multiple insertions time to update will
be more than time to re-compute MST

• Solution: Store the paths (or maximum weighted
edges) between vertex pairs. Requires O(V2) storage

Finding Maximum Weighted Edges

• Find path from a designated root to all other vertices

• Mark the edges that have maximum weight in these
paths

• Storage O(V) ; Time O(V+E)
D

BE

F A C

2
14

2 3

Root D

D:B (D-B)3
D:C (D-B) 3
D:A (D-B) 3
D:E (D-E) 2
D:F (E-F) 4

Finding Maximum Weighted Edges

D

BE

F A C

2
14

2 3

Case 1: (F:C) Max Weight Edges are
Different
Max Weight from F:D (E-F) 4
Max Weight from C:D (B-D) 3

Pick the highest weight edge (E-F) 4

Case 2: (A:C) Max Weight Edges are Same
Max Weight from A:D (B-D) 3
Max Weight from C:D (B-D) 3

Find path from A-C and then find max
weighted edge B:C 2

If we keep track of the parent, the
complexity of this at most O(h);
h=height of the tree

Selection of Root

• We need to select the root such that height of tree is
minimized

• Assume we have no control over the original MST

• Find the longest path in the tree. Then select the
vertex in the center of the path as the root

• Best Case O(logkV); k=average branching

• Worst Case O(V/2) but 50% chance that the max
weighted edges will be different

Issues with Insertion-II

Inserting edges in parallel can lead to cycles

1

2 3 4 5

6

Case 1: Edges 1-5 and 1-6 are inserted in parallel
Both find 3-4 as the edges to be deleted
If added without synchronization creates a cycle

Solution: Mark 3-4 with id of edge replacing it.
Only one id is possible

1

2 3 4 5

6

Case 2: Edges 1-5 and 1-6 are inserted in parallel
1-5 replaces 2-3 and 2-6 replaces 4-5
If added without synchronization creates a cycle

Solution: 2-3 and 4-5 must have the same weight.
Break ties by selecting edges with lower vertex ids.
Reduces to Case 1

Issues with Deletion

• Deletion can be done in parallel by simply marking the
edge as deleted

• Finding edge to recombine the broken trees is
expensive

• May need to search all remainder edges O(E)

• Solution: Number of deletions in MST is less (4-5% of
of changes). Use Boruvka to update

• Keep remainder edges in min-heap

• Reduce the number of edges to search by using
sparsification tree

Sparsification Tree
• Introduced by Eppstein in 1997

• Sparsification—a technique for speeding up dynamic graph algorithms by
Eppstein et. al. JACM 1997

• Divided the edges of the graph into a binary tree

• Each node in the tree represents a subgraph

C

D E

F

A

1
B

2

1 2

G
H

2

3

G-H

C-E, C-F

D-E, D-G

A-C

B-C

B-D

F-H

E-H

A-B E-F

1

CB

D E

F

A

1 1
3

2

1

1

2

2

G
H

2

3
3

3

Sparsification Tree

• Sparsification tree reduce the
number of edges we need to
consider

• For Deletion (u,v)
• Only consider edges from the from the

node where (u,v) are in the same
component to leaf

• Delete (B-D): Search in nodes 5,1,2

• For Insertion (u,v)
• Only traverse the subgraph from the

node where (u,v) are in the same
component to leaf

• Insert (G-F): Traverse through
subgraph at nodes 6,3,4

C-E, C-F

D-E, D-G

A-C

B-C

B-D

F-H

E-H

A-B E-F G-H

1 2 3 4

5 6

7

C

D E

F

A

1
B

2

1 2

G
H

2

3

1

Putting It All Together
• Input: MST, Original Graph, Set of Changed Edges
• Output: Updated MST
• Create Sparsification Tree
• Place key edges and remainder edges in sparsification

tree
• Select root of MST and find distances of all vertices
• Each changed edge is processed in parallel

• Insertion (u,v)
• Find maximum weighted edge in path from (u,v)
• Replace as necessary

• Deletion (u,v)
• Delete edge from MST
• Rejoin by checking remainder edges

Experimental Setup

• Datasets
• Experiments on random graphs created using RMAT

• Vertices: 2^18—2^21

• Edges: 8XVertices

• Machine
• Tusker at Holland Computing Centre

• 6,784 cores interconnected with Mellanox QDR Infiniband
along with 523TB of Lustre storage. Each compute node has
256 GB RAM and 4 Opteron 6272 (2.1 GHz) processors.

• Shared memory implementation using OpenMP

Scalability Results
(repeated traversals-no rooted tree)

10K changes insertions and deletions mixed

5K changes insertions and deletions mixed

Time in seconds

Scalability Results
(Rooted Tree)

Time to create rooted
tree= 0.20 seconds
(sequential)

Total time =.20 +time to
update

Rooted Traversal

1 .57 654.91

2 .41 317.6

4 .32 175.4

8 .27 104.4

Conclusions

• The first parallel algorithm for updating MST

• Sparsification tree reduces amount of traversal

• Rooted tree method much faster than traversal—but need
to make rooting parallel

• We can now handle updates for weighted trees.

• In lookout for other interesting properties to update

• Current code available at https://graphsparsification.herokuapp.com/

• Come to the Poster tomorrow

Funded by

NSF

https://graphsparsification.herokuapp.com/

