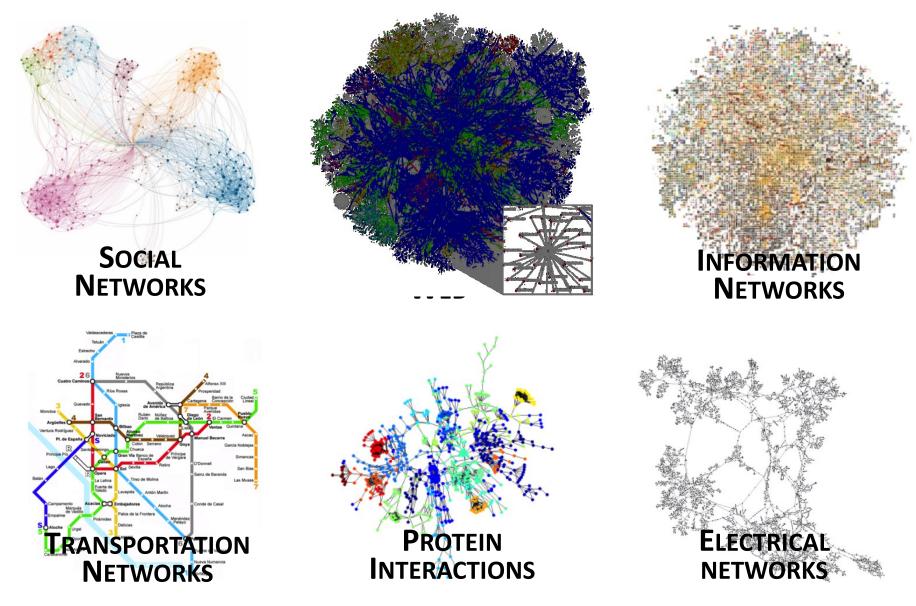


Dynamic Process over Networks: Representation, Modeling, Learning & Inference

Le Song

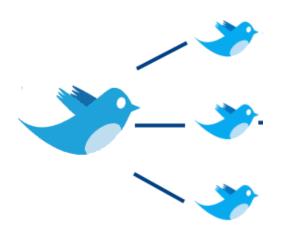
CSE, College of Computing Georgia Institute of Technology

Networks are everywhere



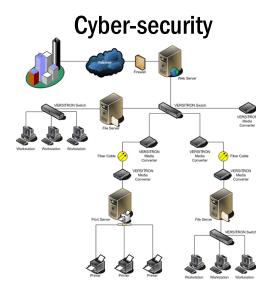
Dynamics are essential to many applications

Information spread

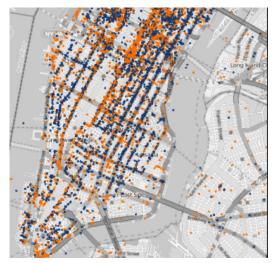


Healthcare analytics

Epidemiology



Smart city



Sustainability problems

Networks for a purpose

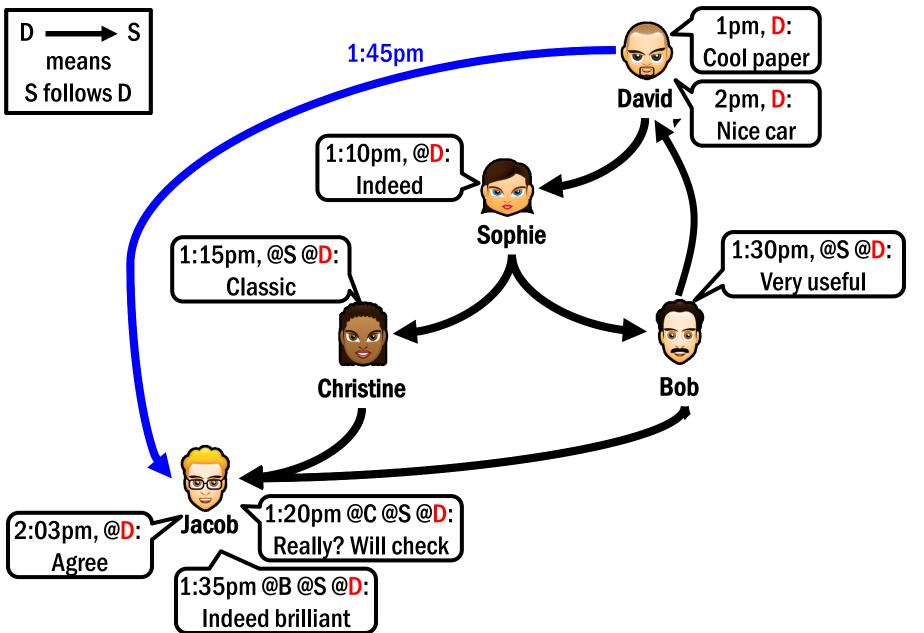
People follow others to receive interesting information

People becomes friends to share joys of life

People follow topics to acquire or contribute knowledge

People link to each other to find job opportunities

A running example: coevoluation



Two interacting processes Information diffusion over the network Link creation driven by information diffusion New link alters diffusion paths **Diffusion network** Alter **Support** Link creation **Information diffusion** process process **Drive**

Previous network models

Lots of network structure & network evolution models:

- Small world [Watts & Strogatz '98]
- Bowtie [Broder et al. '00]
- Preferential Attachment [Barabasi & Albert '99]
- Kronecker graphs [Leskovec et al. '10]

Lots of information diffusion models:

- Discrete time independent cascade [Kemp et al. '03]
- Continuous time independent cascade [Du et al. '13]
- Hawkes process [Zhou et al. '13]

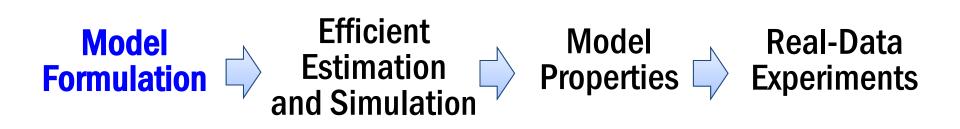
Empirical studies of effects of diffusion on network structure

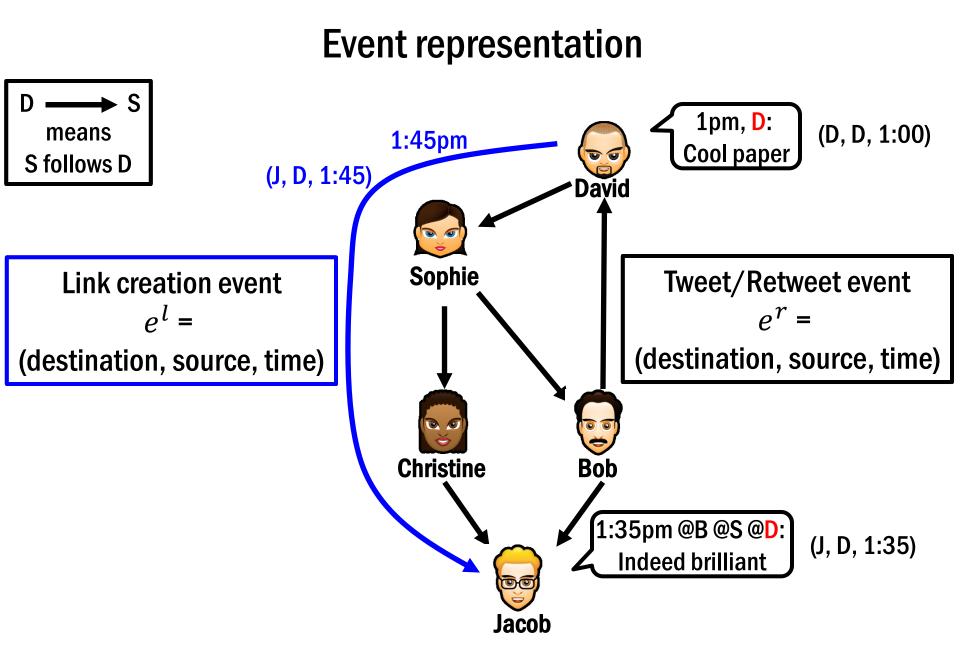
- Traffic-based shortcut [Weng et al. '13]
- Tweet-Retweet-Follow [Antoniades & Dovrolis, '13]
- Bursty dynamics [Myers & Leskovec '14]

Joint models of information diffusion and network coevolution missing!

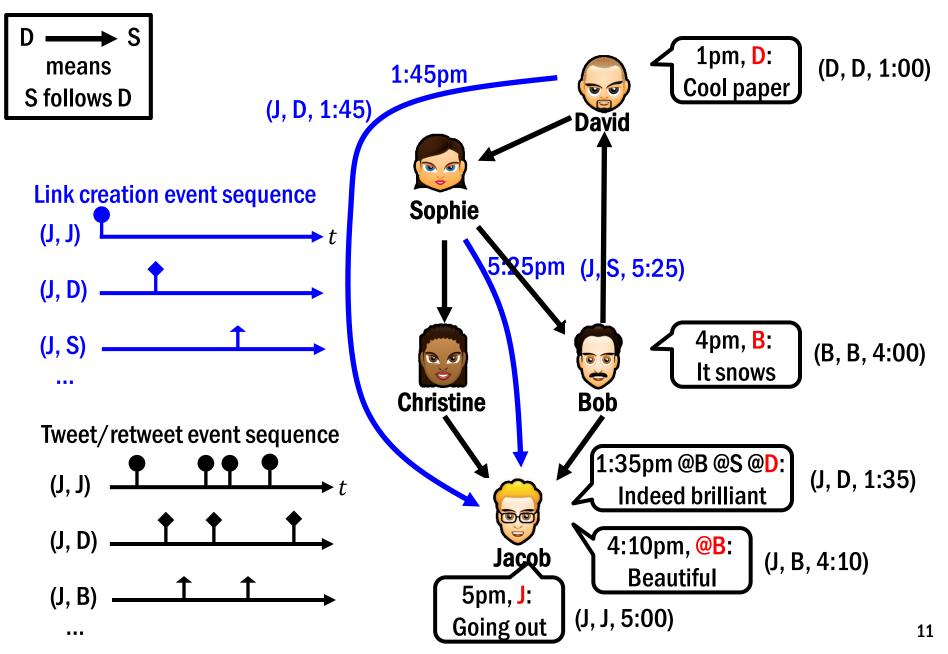
Coevolve:

A Model of Information Diffusion and Network Evolution





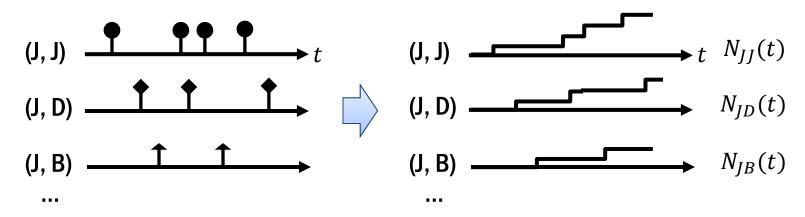
Event sequence



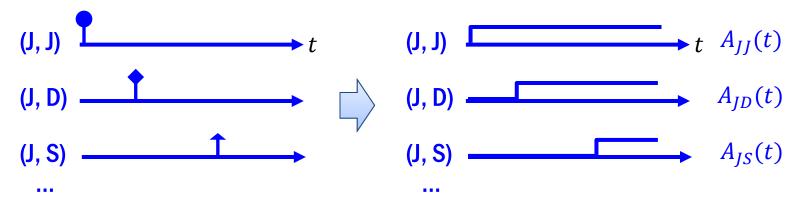
Counting processes

For user J

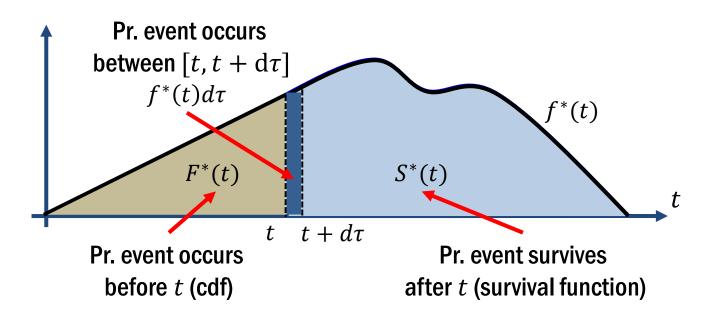
• "Identity Revealing" tweet/retweet processes $N(t) \in \{0\} \cup Z^+$



• "Information driven" link creation processes $A(t) \in \{0,1\}$



Intensity describes a counting process

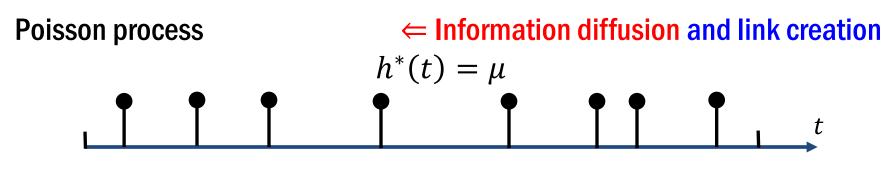


Intensity: Pr. event occurs between $[t, t + d\tau]$ but not before t $h^*(t)d\tau = \frac{f^*(t)d\tau}{S^*(t)} > 0$

Relation to counting process

$$N(t) = \int_0^t h^*(\tau) d\tau + M(t)$$

Example dynamics



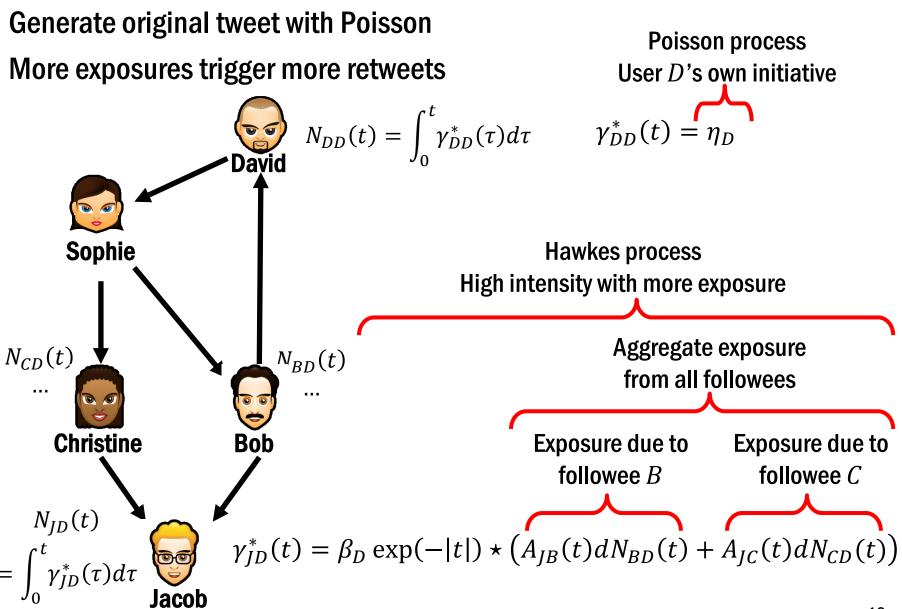
Survival process

⇐ Link creation

$$h^*(t) = (1 - N(t)) g^*(t)$$

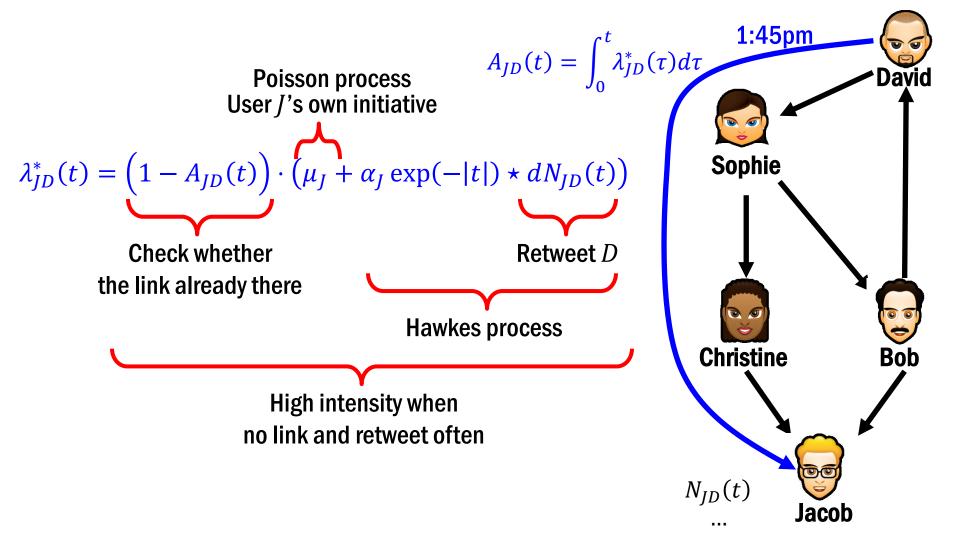
Two interacting processes Information diffusion over the network Link creation driven by information diffusion New link alters diffusion paths **Diffusion network** $A(t) \in \{0,1\}$ Alter **Support** Link creation Information diffusion process $N(t) \in \{0\} \cup Z^+$ process **Survival process** Hawkes process **Drive** & Poisson process & Poisson process

Modeling information diffusion



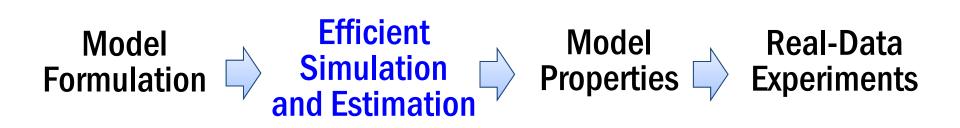
Link creation process

Retweet more often more likely to link directly



Coevolve:

A Model of Information Diffusion and Network Evolution



Simulation

Estimate parameter via MLE

Given observation window [0, T), a network of m nodes, and a set of

- retweet events $\mathcal{E} = \{e_i^r = (u_i, s_i, t_i)\}$ and
- link creation events $\mathcal{A} = \{e_i^l = (u_i, s_i, t_i)\}$

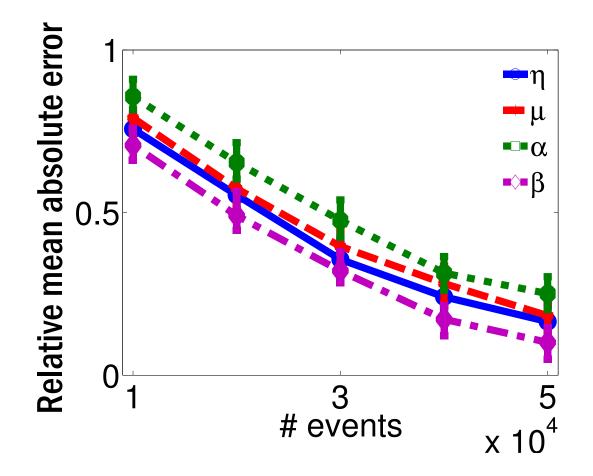
Find optimal parameters by maximizing log-likelihood:

$$\begin{array}{l} \begin{array}{l} \text{Concave in}\\ \text{model}\\ \text{parameters}\\ \mu, \alpha, \eta, \beta \end{array} & \mathcal{L}(\{\mu_u\}, \{\alpha_u\}, \{\eta_u\}, \{\beta_s\}) = \\ & = \sum_{e_i^T \in \mathcal{E}} \log(\gamma_{u_i, s_i}^*(t_i)) - \sum_{u, s \in [m]} \int_0^T \gamma_{u, s}^*(\tau) \, d\tau \quad \text{Tweet/Retweet} \end{array}$$

$$\begin{array}{l} \text{Decouple}\\ \text{node-wise,}\\ \text{parallelizable!} \end{array} & + \sum_{e_i^I \in \mathcal{A}} \log(\lambda_{u_i, s_i}^*(t)) - \sum_{u, s \in [m]} \int_0^T \lambda_{u, s}^*(\tau) \, d\tau \quad \text{Link creation} \end{array}$$

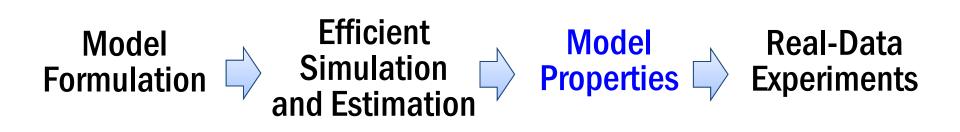
Model estimation accuracy

Parameter estimation improves with more events



Coevolve:

A Model of Information Diffusion and Network Evolution

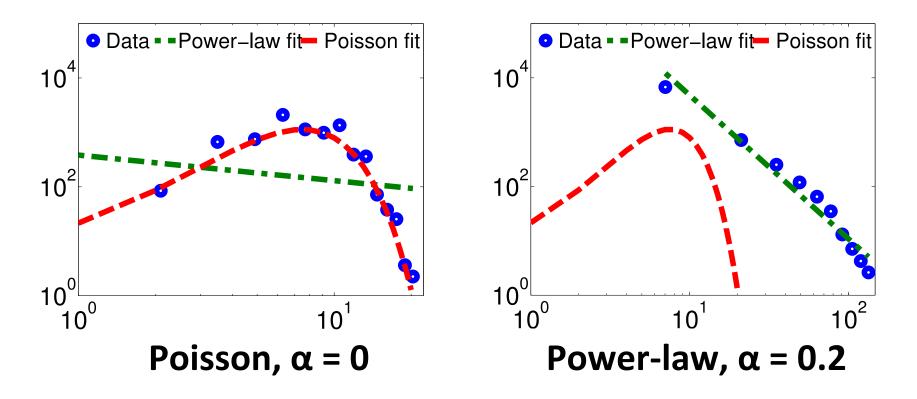


Degree distribution

The higher

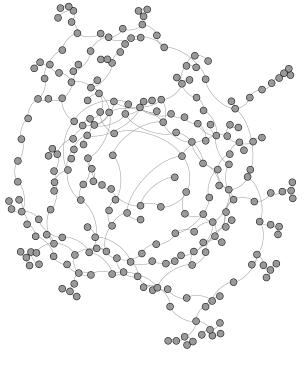
- the information driven link creation parameter lpha
- or the retweet excitation parameter β ,

the closer to a power-law

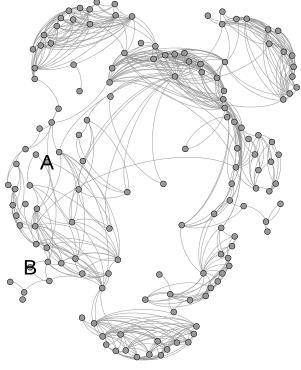


Different types of networks

Generate networks with very different structure



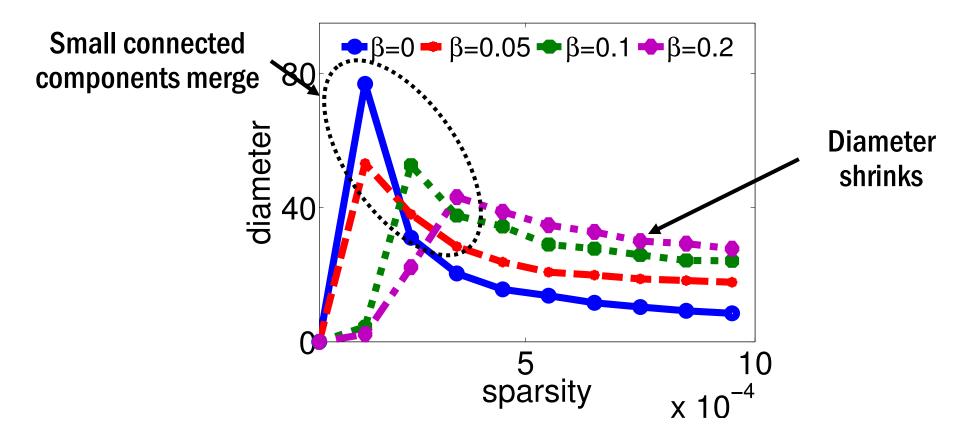
Erdos-Renyi



Scale-free network

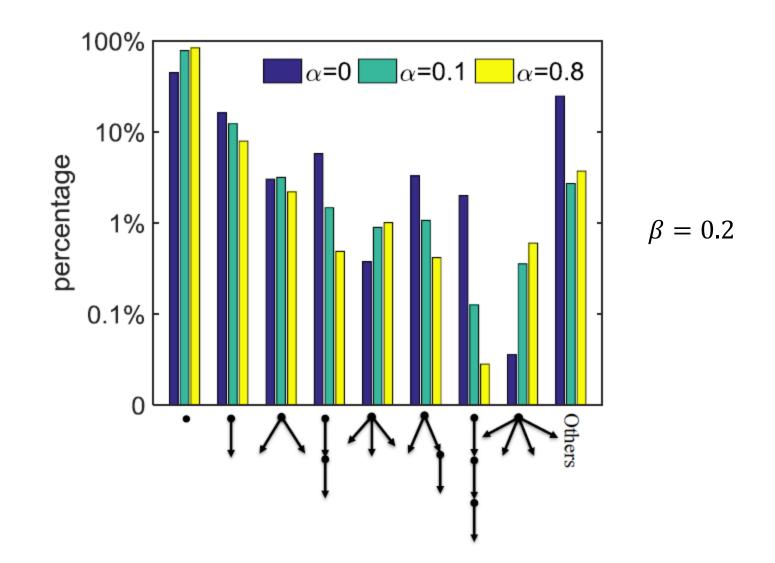
Network diameters

Generate networks with small shrinking diameter



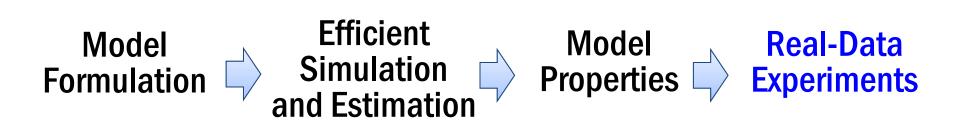
Cascade patterns: structure

Generate short and fat cascades as α increases



Coevolve:

A Model of Information Diffusion and Network Evolution



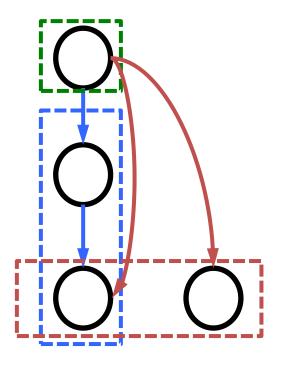
Links, tweets and retweets

Evaluate with a Twitter dataset from [Antoniades and Dovrolis '13]

C ~371K tweets from 8,779 source nodes

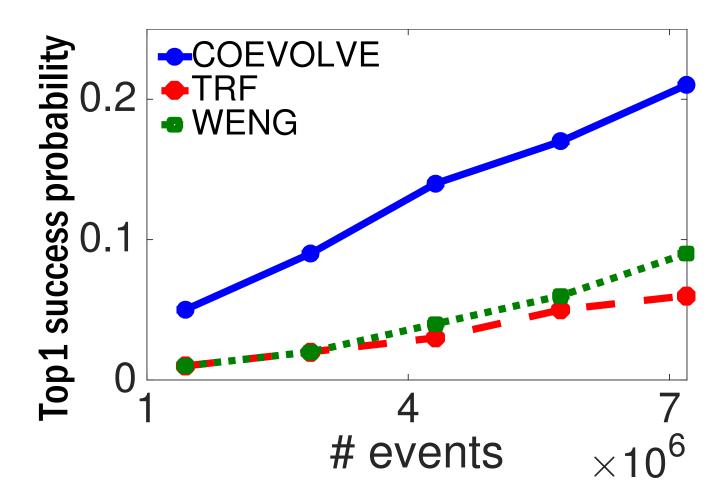
~130K retweets from 77,200 users

~7M new links to source nodes by ~6M users



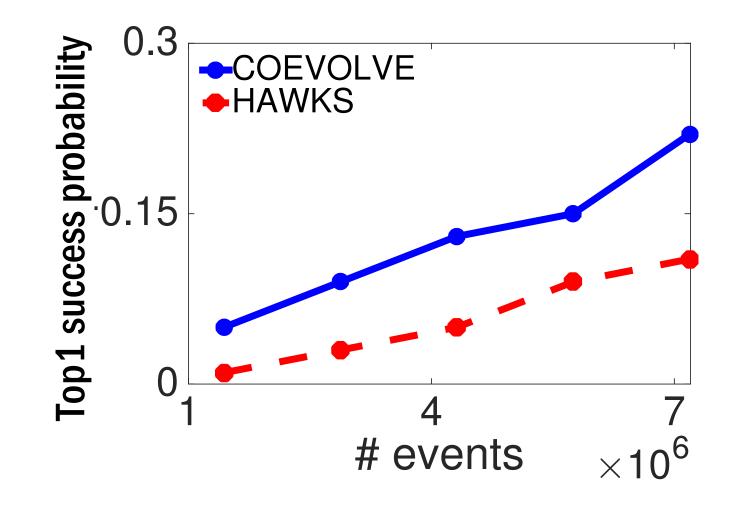
Link creation prediction

Outperform the predictions given by two state-of-the-art [Weng et al '13, Myers & Leskovec '14]



Information diffusion prediction

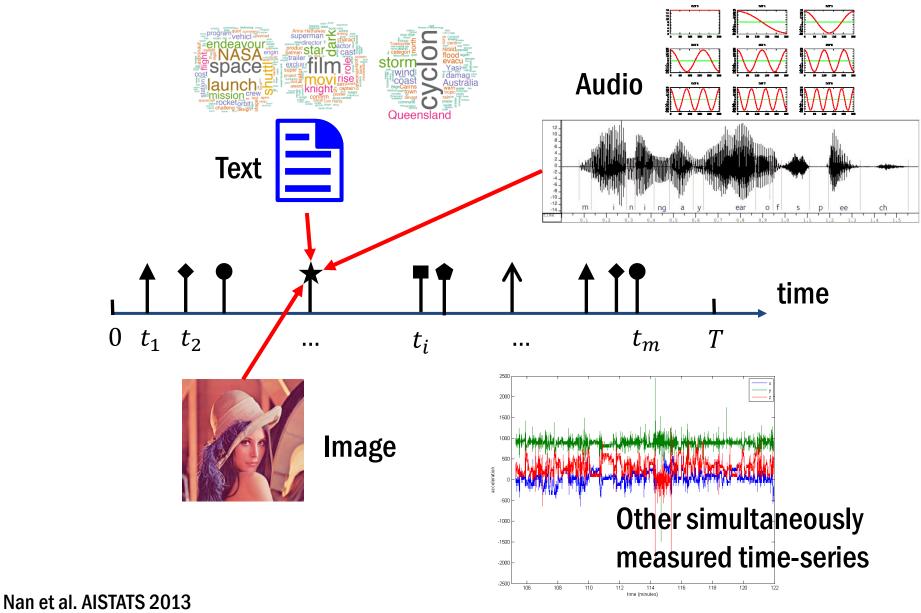
Beats the predictions given by a standard Hawkes process



Conclusion

- A data-driven joint point process model of information diffusion and network coevolution
 - Simple generative model
 - Efficient simulation
 - Convex estimation
 - Microscopic: more accurate link and event prediction
 - Macroscopic: realistic network properties and information diffusion properties
- Many possible extensions, such as
 - Node birth and death
 - Link deletion
 - Incorporate node attributes and tweet contents
 - Deep learning for the intensity function

Joint models with rich context



Nan et al. KDD 2015

PtPack: C++ point process package

