On Betweenness Centrality Problems in Dynamic Graphs

Elisabetta Bergamini, Henning Meyerhenke
SIAM Conference on Computational Science and Engineering · February 27 - March 3, 2017
Introduction | Network Analysis

Graphs/networks can be used to model **relations** or **interactions**:

Examples:
- Social networks
- Protein interactions
- Transportation networks
- Climate correlations
- ...

Goal:
Discover **useful information** by analyzing the **network structure**
Introduction | Complex networks

Features:
- Small diameter
- Skewed degree distribution

Targeting:
- Large networks
- Dynamic networks
Betweenness centrality

- BC: participation of nodes in the **shortest paths** of the network
- Nodes with **high betweenness** → lie in **many shortest paths** between pairs of nodes
- Given $G = (V, E)$ and $v \in V$:

$$b_C(v) = \sum_{s,t \in V \atop s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where:

- $\sigma_{st} = \text{number of s.p. between } s \text{ and } t$
- $\sigma_{st}(v) = \text{number of s.p. between } s \text{ and } t \text{ that go through } v$
Introduction | Topics of this talk

- **Betweenness Approximation in Dynamic Networks**
 [Bergamini, Meyerhenke and Staudt, ALENEX 2015]
 [Bergamini and Meyerhenke, ESA 2015]
 [Bergamini and Meyerhenke, Internet Mathematics]

- **Single-node Betweenness Update**
 [Bergamini, Crescenzi, D’Angelo, Meyerhenke, Severini, Velaj. Under review.]
Introduction | Algorithms for BC

Exact solution

- Brandes’s algorithm: $\Theta(|V||E| + |V|^2 \log |V|)$ [Brandes, JMSO 2001]

Approximation algorithms

- Extrapolate betweenness from randomly sampled shortest paths

 [Geisberger et al., ALENEX 2008], [Bader et al., WAW 2007],

 [Riondato and Kornaropoulos, DAMI], [Riondato and Upfal, KDD 2016]...

Exact dynamic algorithms

- Several approaches [Lee et al., WWW 2012], [Green et al., SocialCom 2012] ...

- None of them is asymptotically faster than recomputation

Our Contribution

- **Dynamic approximation algorithms**

 [Bergamini et al., ALENEX 2015], [Bergamini and Meyerhenke, ESA 2015],

 [Bergamini and Meyerhenke, Internet Mathematics]
Static betweenness approximation
Our building block | RK algorithm [Riondato, Kornaropoulos 2014]

- A set of r shortest paths between vertex pairs (s_i, t_i) \(i = 1, \ldots, r \) is sampled
- \(\tilde{c}_B(v) \): fraction of sampled paths that go through \(v \)

Maximum error guarantee:

$$|c_B(v) - \tilde{c}_B(v)| < \epsilon \quad \forall v \in V$$

with probability at least \(\delta \)
Updating betweenness after edge updates
Basic idea:

- we keep track of the sampled shortest paths and replace them when necessary

- to ensure the maximum error guarantee, in some cases we sample new paths
Experiments
Experiments | NetworKit

- We implemented our algorithms in **NetworKit**:

 - **tool suite for scalable network analysis**
 - parallel algorithms
 - approximation algorithms

 - **features include** . . .
 - community detection
 - centrality measures
 - graph generators

 - **free software**
 - Python package with C++ backend
 - under continuous development
 - download from http://networkit.iti.kit.edu
Results | Accuracy

Measured errors

- absolute errors **always lower** than the theoretical guarantees
- average errors **orders of magnitude** smaller

Rank error

\[r(v) = \frac{\text{pos}(v)_{\text{exact}}}{\text{pos}(v)_{\text{approx}}} \]

\[\text{err}_{\text{rank}}(v) = \max\{r(v), \frac{1}{r(v)}\} \]

Relative rank errors for PGPgiantcompo
very low rank error for nodes with high betweenness

\[r(v) = \frac{\text{pos}(v)_{\text{exact}}}{\text{pos}(v)_{\text{approx}}} \]

\[\text{err}_{\text{rank}}(v) = \max\{r(v), \frac{1}{r(v)}\} \]

Relative rank errors for PGPgiantcompo
Results | Running times

Dataset
- real dynamic networks, ranging from \(\approx 85 \text{ K} \) to \(\approx 36 \text{ M} \) edges
- type: communication, friendship, coauthorship, hyperlink

| Graph | Edges | \(|\beta| = 1\) | \(|\beta| = 1024\) | \(|\beta| = 1\) | \(|\beta| = 1024\) |
|------------------|---------|----------------|-----------------|----------------|----------------|
| repliesDigg | 85,155 | 0.078 | 1.028 | 5.75 | 9.93 |
| emailSlashdot | 116,573 | 0.043 | 1.055 | 9.93 | 13.04 |
| emailLinux | 159,996 | 0.049 | 1.412 | 5.18 | 13.04 |
| facebookPosts | 183,412 | 0.023 | 1.416 | 13.04 | 24.11 |
| emailEnron | 297,456 | 0.368 | 1.279 | 24.11 | 39.25 |
| facebookFriends | 817,035 | 0.447 | 1.946 | 39.25 | 80.71 |
| arXivCitations | 3,148,447 | 0.038 | 0.186 | 80.71 | 3818.20 |
| englishWikipedia | 36,532,531 | 1.078 | 6.735 | 3818.20 | 3818.20 |
Results

Running times

| Dataset | |\(\beta\) = 1| |\(\beta\) = 1024| |
|-----------------------|-----------------|-----------------|-----------------|-----|
| Graph | Time DA [s] | Time RK [s] | Time RK [s] |-----|
| repliesDigg | 85,155 | 0.078 | 1.028 | 5.75|
| emailSlashdot | 116,573 | 0.043 | 1.055 | 9.93|
| emailLinux | 159,996 | 0.049 | 1.412 | 5.18|
| facebookPosts | 183,412 | 0.023 | 1.416 | 13.04|
| emailEnron | 297,456 | 0.368 | 1.279 | 24.11|
| facebookFriends | 817,035 | 0.447 | 1.946 | 39.25|
| arXivCitations | 3,148,447 | 0.038 | 0.186 | 80.71|
| englishWikipedia | 36,532,531 | 1.078 | 6.735 | 3818.20|

- real dynamic networks, ranging from \(\approx 85\ K\) to \(\approx 36\ M\) edges
- type: communication, friendship, coauthorship, hyperlink
- recomputation with dynamic algorithm never takes more than few seconds
Results | Speedups on RK

Dataset
- real dynamic networks, ranging from $\approx 85\,K$ to $\approx 36\,M$ edges
- type: communication, friendship, coauthorship, hyperlink
Results | Speedups on RK

- real dynamic networks, ranging from $\approx 85\,K$ to $\approx 36\,M$ edges
- type: communication, friendship, coauthorship, hyperlink

speedups up to more than 10^3 and always faster than recomputation
Updating betweenness centrality of a single node
Maximum Betweenness Improvement

Maximum Betweenness Improvement (MBI) Problem:
- Given node u and $k > 0$, add k new edges incident to u in order to maximize $c_B(u)$
- Motivation: High betweenness can be beneficial for a node:
 - More “traffic” flowing through a node: more customers
 - Widely studied for PageRank (link farming)

GREEDY [Crescenzi et al., SEA 2015]: new greedy algorithm
- Add new edges several times and recompute $c_B(u)$ every time
- Very expensive: $\Theta(k \cdot |V|^2 |E|)$ operations
Single-node betweenness update

Use a dynamic algorithm to recompute $c_B(u)$ after each insertion

- Existing algorithms update score of all nodes
- Observation: If we add edge (u, v), $c_B(u)$ can only increase
- We can just focus on nodes with a new shortest path going through (u, v)

Traditional dynamic betweenness algorithms need to update also betweenness of nodes that lied in old shortest paths
Single-node betweenness update

- Compared to existing dynamic algorithms: **reduced worst-case complexity** from $O(|V||E|)$ to $O(|V|^2)$
- Much faster in practice:
 - With our new dynamic algorithm, the greedy algorithm for MBI takes **seconds** or **a few minutes** on graphs with up to 10^5 edges (before: hours for a few hundreds edges)
Conclusions

- Dynamic algorithms are a necessity for networks that continuously evolve over time.
- We considered two different problems:
 - Update an approximation of betweenness for all nodes.
 - Update the betweenness of one node after an edge insertion.
- Both approaches much faster than static algorithms, but they require additional memory: $\Theta(r|V|)$ and $\Theta(|V|^2)$.
- Open problems:
 - Can we reduce the memory requirements of dynamic algorithms?
 - Can we devise a faster static algorithm for the betweenness of a single node?
Thank you for your attention.

Acknowledgements

This work was partially supported by DFG grant FINCA within the SPP 1736
RK algorithm | Paths sampling

- Sample a vertex pair \((s, t)\) uniformly at random \(\rightarrow (n(n-1))\) pairs
- **Extended** SSSP from \(s \rightarrow\) distances + **number of shortest paths** + list of predecessors
- Starting from \(t\), **select a predecessor** \(z\) with probability

\[
\frac{\sigma_z}{\sigma_t}
\]

- Repeat this until we reach \(s\)
- Every shortest path between \(s\) and \(t\) has the **same probability** to be sampled

\[
P(Z_1) = \frac{2}{4}, P(Z_2) = \frac{1}{4}, P(Z_3) = \frac{1}{4}
\]
RK algorithm | Vertex diameter

- VD = number of nodes in the shortest path with the maximum number of nodes
- unweighted graphs: equal to diameter + 1, weighted graphs: unrelated
- exact computation requires APSP → approximation

Connected unweighted graphs

Other graphs...
Open problems | Memory bottleneck

Memory footprints

- dynamic exact algorithms: at least $\Theta(n^2)$
- BA and RK: $\Theta(m)$
- our algorithms: $\Theta(r \cdot n)$

On graphs with millions of edges

- dynamic exact algorithms are limited by their memory requirements
- RK and our algorithm are still fast but their memory requirements may exceed internal memory

both RK and our algorithm could benefit from efficient external memory implementations