
E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 1

On Betweenness Centrality Problems
in Dynamic Graphs

Elisabetta Bergamini, Henning Meyerhenke
SIAM Conference on Computational Science and Engineering · February 27 - March 3, 2017

www.kit.eduKIT - The Research University in the Helmholtz Association

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 2

Introduction | Network Analysis
Graphs/networks can be used to model relations or interactions:

Phenomenon

Network representation

Analysis

Social networks

Protein interactions

Transportation networks

Climate correlations

...

Discover useful information by analyzing the network structure

Goal:

Examples:

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 3

Introduction | Complex networks
Features:

Small diameter

Skewed degree distribution

Targeting:

Large networks

Dynamic networks

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 4

Introduction | Betweenness centrality

BC: participation of nodes in the shortest paths of the network

Nodes with high betweenness→ lie in many shortest paths
between pairs of nodes

Given G = (V , E) and v ∈ V :

bC(v) =
∑

s,t∈V
s 6=v 6=t

σst (v)
σst

where:
σst = number of s.p. between s
and t

σst (v) = number of s.p. between s
and t that go through v [geoidin.wordpress.com]

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 5

Introduction | Topics of this talk

Betweenness Approximation in Dynamic Networks
[Bergamini, Meyerhenke and Staudt, ALENEX 2015]

[Bergamini and Meyerhenke, ESA 2015]

[Bergamini and Meyerhenke, Internet Mathematics]

Single-node Betweenness Update
[Bergamini, Crescenzi, D’Angelo, Meyerhenke, Severini, Velaj. Under review.]

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 6

Introduction | Algorithms for BC

Exact solution

Brandes’s algorithm: Θ(|V ||E | + |V |2 log |V |) [Brandes, JMSo 2001]

Approximation algorithms

Extrapolate betweenness from randomly sampled shortest paths
[Geisberger et al., ALENEX 2008], [Bader et al., WAW 2007],
[Riondato and Kornaropoulos, DAMI], [Riondato and Upfal, KDD 2016]...

Exact dynamic algorithms

Several approaches [Lee et al., WWW 2012], [Green et al., SocialCom 2012] ...

None of them is asymptotically faster than recomputation
Our Contribution

Dynamic approximation algorithms
[Bergamini et al., ALENEX 2015], [Bergamini and Meyerhenke, ESA 2015],
[Bergamini and Meyerhenke, Internet Mathematics]

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 7

Static betweenness
approximation

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 8

Our building block | RK algorithm [Riondato, Kornaropoulos 2014]

A set of r shortest paths between vertex pairs (si , ti) i = 1, .., r
is sampled

c̃B(v): fraction of sampled paths that go through v

s1

t1

s2

t2

s3

t3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

+ 1
3

Maximum error guarantee:

|cB(v)− c̃B(v)| < ε ∀v ∈ V

with probability at least δ

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 9

Updating betweenness after
edge updates

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 10

BC update | Replacing the shortest paths

Basic idea:

we keep track of the sampled shortest paths and replace them
when necessary

si

ti

si si

ti ti

+ 1
r

+ 1
r

− 1
r

− 1
r

− 1
r

− 1
r

to ensure the maximum error guarantee, in some cases we
sample new paths

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 11

Experiments

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 12

Experiments | NetworKit

We implemented our algorithms in NetworKit:

tool suite for scalable network analysis
parallel algorithms
approximation algorithms

features include . . .
community detection
centrality measures
graph generators

free software
Python package
with C++ backend
under continuous development
download from
http://networkit.iti.kit.edu

Jupyter Notebook

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 13

Results | Accuracy

Relative rank errors for PGPgiantcompo

Measured errors

absolute errors always lower than the theoretical guarantees

average errors orders of magnitude smaller

Rank error

r (v) =
pos(v)exact

pos(v)approx

errrank(v) = max{r (v),
1

r (v)
}

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 13

Results | Accuracy

Relative rank errors for PGPgiantcompo

Measured errors

absolute errors always lower than the theoretical guarantees

average errors orders of magnitude smaller

very low rank error for nodes with high betweenness

Rank error

r (v) =
pos(v)exact

pos(v)approx

errrank(v) = max{r (v),
1

r (v)
}

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 14

Results | Running times

Edges Time DA [s] Time RK [s]
Graph |β| = 1 |β| = 1024
repliesDigg 85,155 0.078 1.028 5.75
emailSlashdot 116,573 0.043 1.055 9.93
emailLinux 159,996 0.049 1.412 5.18
facebookPosts 183,412 0.023 1.416 13.04
emailEnron 297,456 0.368 1.279 24.11
facebookFriends 817,035 0.447 1.946 39.25
arXivCitations 3,148,447 0.038 0.186 80.71
englishWikipedia 36,532,531 1.078 6.735 3818.20

Dataset

real dynamic networks, ranging from ≈ 85 K to ≈ 36 M edges

type: communication, friendship, coauthorship, hyperlink

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 14

Results | Running times

Edges Time DA [s] Time RK [s]
Graph |β| = 1 |β| = 1024
repliesDigg 85,155 0.078 1.028 5.75
emailSlashdot 116,573 0.043 1.055 9.93
emailLinux 159,996 0.049 1.412 5.18
facebookPosts 183,412 0.023 1.416 13.04
emailEnron 297,456 0.368 1.279 24.11
facebookFriends 817,035 0.447 1.946 39.25
arXivCitations 3,148,447 0.038 0.186 80.71
englishWikipedia 36,532,531 1.078 6.735 3818.20

Dataset

real dynamic networks, ranging from ≈ 85 K to ≈ 36 M edges

type: communication, friendship, coauthorship, hyperlink
recomputation with dynamic algorithm
never takes more than few seconds

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 15

Results | Speedups on RK

Dataset

real dynamic networks, ranging from ≈ 85 K to ≈ 36 M edges

type: communication, friendship, coauthorship, hyperlink

Speedups on static recomputation with RK

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 15

Results | Speedups on RK

Dataset

real dynamic networks, ranging from ≈ 85 K to ≈ 36 M edges

type: communication, friendship, coauthorship, hyperlink

Speedups on static recomputation with RK

speedups up to more than 103 and always
faster than recomputation

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 16

Updating betweenness
centrality of a single node

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 17

Maximum Betweenness Improvement
Maximum Betweenness Improvement (MBI) Problem:

Given node u and and k > 0, add k new edges incident to u
in order to maximize cB(u)

Motivation: High betweenness can be beneficial for a node:

More “traffic” flowing through a node: more customers
Widely studied for PageRank (link farming)

u u

GREEDY [Crescenzi et al., SEA 2015]: new greedy algorithm

Add new edges several times and recompute cB(u) every time
Very expensive: Θ(k · |V |2|E |) operations

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 18

Single-node betweenness update

u

v

Use a dynamic algorithm to recompute cB(u) after each insertion

Existing algorithms update score of all nodes

Observation: If we add edge (u, v), cB(u) can only increase

Traditional dynamic betweenness algorithms need to update also
betweenness of nodes that lied in old shortest paths

We can just focus on nodes
with a new shortest path going
through (u, v)

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 19

Single-node betweenness update

Compared to existing dynamic algorithms:
reduced worst-case complexity from O(|V ||E |) to O(|V |2)

Much faster in practice:

With our new dynamic algorithm, the greedy algorithm for MBI takes
seconds or a few minutes on graphs with up to 105 edges
(before: hours for a few hundreds edges)

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 20

Conclusions

Dynamic algorithms are a necessity for networks that continuously
evolve over time

We considered two different problems:

Update an approximation of betweenness for all nodes
Update the betweenness of one node after an edge insertion

Both approaches much faster than static algorithms, but they
require additional memory: Θ(r |V |) and Θ(|V |2)

Open problems:

Can we reduce the memory requirements of dynamic
algorithms?
Can we devise a faster static algorithm for the betweenness of
a single node?

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 21

Thank you for your attention.

Aknowledgements

This work was partially supported by DFG grant FINCA within the SPP 1736

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 22

RK algorithm | Paths sampling

sample a vertex pair (s, t) uniformly at random→ (n(n−1) pairs)

extended SSSP from s → distances + number of shortest
paths + list of predecessors

starting from t , select a predecessor z with probability

σz

σt

t

s

z1 z2 z3

P(z1) = 2
4 , P(z2) = 1

4 , P(z3) = 1
4

repeat this until we reach s

every shortest path between s and t has
the same probability to be sampled

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 23

RK algorithm | Vertex diameter

VD = number of nodes in the shortest path with the maximum
number of nodes

unweighted graphs: equal to diameter +1,
weighted graphs: unrelated

exact computation requires APSP→ approximation

Connected unweighted graphs Other graphs...
s

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs 24

Open problems | Memory bottleneck

Memory footprints

dynamic exact algorithms: at least Θ(n2)

BA and RK: Θ(m)

our algorithms: Θ(r · n)

both RK and our algorithm could benefit from efficient
external memory implementations

On graphs with millions of edges

dynamic exact algorithms are limited by their memory require-
ments

RK and our algorithm are still fast but their memory requirements
may exceed internal memory

	Introduction

