

On Betweenness Centrality Problems in Dynamic Graphs

Elisabetta Bergamini, Henning Meyerhenke

SIAM Conference on Computational Science and Engineering · February 27 - March 3, 2017

www.kit.edu

Introduction | Network Analysis

Graphs/networks can be used to model relations or interactions:

Examples:

- Social networks
- Protein interactions
- Transportation networks
- Climate correlations

Network representation

Goal:

Discover useful information by analyzing the network structure

Introduction | Complex networks

Features:

- Small diameter
- Skewed degree distribution

Targeting:

- Large networks
- Dynamic networks

Introduction | Betweenness centrality

- BC: participation of nodes in the shortest paths of the network
- Nodes with high betweenness

 Iie in many shortest paths
 between pairs of nodes
- Given G = (V, E) and $v \in V$:

$$b_C(v) = \sum_{\substack{s,t \in V \\ s \neq v \neq t}} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where:

- σ_{st} = number of s.p. between s and t
- $\sigma_{st}(v)$ = number of s.p. between s and t that go through v

Introduction | Topics of this talk

Betweenness Approximation in Dynamic Networks

[Bergamini, Meyerhenke and Staudt, ALENEX 2015]

[Bergamini and Meyerhenke, ESA 2015]

[Bergamini and Meyerhenke, Internet Mathematics]

Single-node Betweenness Update

[Bergamini, Crescenzi, D'Angelo, Meyerhenke, Severini, Velaj. Under review.]

Introduction | Algorithms for BC

Exact solution

Brandes's algorithm: $\Theta(|V||E| + |V|^2 \log |V|)$ [Brandes, JMSo 2001]

Approximation algorithms

Extrapolate betweenness from randomly sampled shortest paths

[Geisberger et al., ALENEX 2008], [Bader et al., WAW 2007],

[Riondato and Kornaropoulos, DAMI], [Riondato and Upfal, KDD 2016]...

Exact dynamic algorithms

- Several approaches [Lee et al., WWW 2012], [Green et al., SocialCom 2012] ...
- None of them is asymptotically faster than recomputation

Our Contribution

Dynamic approximation algorithms

[Bergamini et al., ALENEX 2015], [Bergamini and Meyerhenke, ESA 2015], [Bergamini and Meyerhenke, Internet Mathematics]

Static betweenness approximation

Our building block | **RK algorithm** [Riondato, Kornaropoulos 2014]

- A set of r shortest paths between vertex pairs (s_i, t_i) i = 1, ..., r is sampled
- $\tilde{c}_B(v)$: fraction of sampled paths that go through v

Maximum error guarantee:

$$|c_B(v) - \tilde{c}_B(v)| < \epsilon \qquad \forall v \in V$$

with probability at least $\boldsymbol{\delta}$

Updating betweenness after edge updates

BC update | Replacing the shortest paths

Basic idea:

we keep track of the sampled shortest paths and replace them when necessary

to ensure the maximum error guarantee, in some cases we sample new paths

Experiments

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs

Experiments | NetworKit

• We implemented our algorithms in **NetworKit**:

tool suite for scalable network analysis

- parallel algorithms
- approximation algorithms
- **features** include ...
 - community detection
 - centrality measures
 - graph generators

free software

- Python package with C++ backend
- under continuous development
- download from http://networkit.iti.kit.edu

Results | ACCUracy

Measured errors

- absolute errors always lower than the theoretical guarantees
- average errors orders of magnitude smaller

very low rank error for nodes with high betweenness

R

Results | Running times

Dataset

- real dynamic networks, ranging from \approx 85 K to \approx 36 M edges
- type: communication, friendship, coauthorship, hyperlink

	Edges	Time DA [s]		Time RK [s]
Graph		$ \beta = 1$	$ \beta = 1024$	
repliesDigg	85,155	0.078	1.028	5.75
emailSlashdot	116,573	0.043	1.055	9.93
emailLinux	159,996	0.049	1.412	5.18
facebookPosts	183,412	0.023	1.416	13.04
emailEnron	297,456	0.368	1.279	24.11
facebookFriends	817,035	0.447	1.946	39.25
arXivCitations	3,148,447	0.038	0.186	80.71
englishWikipedia	36,532,531	1.078	6.735	3818.20

Results | Running times

Karlsruhe Institute of Technology

Dataset

- real dynamic networks, ranging from \approx 85 K to \approx 36 M edges
- type: communication, friendship, coauthorship, hyperlink
 recomputation with dynamic algorithm
 never takes more than few seconds
 [s] Time RK [s]

				TIME RK [S]
Graph		$ \beta = 1$	$ \beta = 1024$	
repliesDigg	85,155	0.078	1.028	5.75
emailSlashdot	116,573	0.043	1.055	9.93
emailLinux	159,996	0.049	1.412	5.18
facebookPosts	183,412	0.023	1.416	13.04
emailEnron	297,456	0.368	1.279	24.11
facebookFriends	817,035	0.447	1.946	39.25
arXivCitations	3,148,447	0.038	0.186	80.71
englishWikipedia	36,532,531	1.078	6.735	3818.20
			-	

Results | Speedups on RK

Dataset

- real dynamic networks, ranging from pprox 85 K to pprox 36 M edges
- type: communication, friendship, coauthorship, hyperlink

Updating betweenness centrality of a single node

Maximum Betweenness Improvement

Maximum Betweenness Improvement (MBI) Problem:

- Given node *u* and and k > 0, add *k* new edges incident to *u* in order to maximize $c_B(u)$
- Motivation: **High betweenness** can be **beneficial** for a node:
 - More "traffic" flowing through a node: more customers
 - Widely studied for PageRank (link farming)

GREEDY [Crescenzi et al., SEA 2015]: new greedy algorithm

Add new edges several times and recompute c_B(u) every time
 Very expensive: Θ(k · |V|²|E|) operations

Single-node betweenness update

- $\sqrt{2}$ Use a dynamic algorithm to recompute $c_B(u)$ after each insertion
- Existing algorithms update score of all nodes
- Observation: If we add edge (u, v), $c_B(u)$ can only **increase**
- We can just focus on nodes with a **new shortest path** going through (*u*, *v*)

Traditional dynamic betweenness algorithms need to update also betweenness of nodes that lied in old shortest paths

Single-node betweenness update

- Compared to existing dynamic algorithms:
 reduced worst-case complexity from O(|V||E|) to O(|V|²)
- Much faster in practice:

With our new dynamic algorithm, the greedy algorithm for MBI takes seconds or a few minutes on graphs with up to 10⁵ edges (before: hours for a few hundreds edges)

Conclusions

- Dynamic algorithms are a necessity for networks that continuously evolve over time
- We considered two different problems:
 - Update an approximation of betweenness for all nodes
 - Update the betweenness of one node after an edge insertion
- Both approaches much faster than static algorithms, but they require **additional memory**: $\Theta(r|V|)$ and $\Theta(|V|^2)$
- Open problems:
 - Can we reduce the memory requirements of dynamic algorithms?
 - Can we devise a faster static algorithm for the betweenness of a single node?

Thank you for your attention.

Aknowledgements

This work was partially supported by DFG grant FINCA within the SPP 1736

E. Bergamini – On Betweenness Centrality Problems in Dynamic Graphs

RK algorithm | Paths sampling

- sample a vertex pair (*s*, *t*) uniformly at random \rightarrow (*n*(*n*-1) pairs)
- extended SSSP from s

 → distances + number of shortest
 paths + list of predecessors
- starting from *t*, **select a predecessor** *z* with probability

RK algorithm | Vertex diameter

- VD = number of nodes in the shortest path with the maximum number of nodes
- unweighted graphs: equal to diameter +1, weighted graphs: unrelated
- exact computation requires $APSP \rightarrow approximation$

Connected unweighted graphs

Other graphs...

Open problems | Memory bottleneck

Memory footprints

- dynamic exact algorithms: at least $\Theta(n^2)$
- BA and RK: $\Theta(m)$
- our algorithms: $\Theta(r \cdot n)$

On graphs with millions of edges

- dynamic exact algorithms are limited by their memory requirements
- RK and our algorithm are still fast but their memory requirements may exceed internal memory

both RK and our algorithm could benefit from efficient **external memory** implementations