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Problem description

Propagation network:
» G = (V, E) network (directed graph)
» S C V source set
» {ajj: (i,j) € E}: tjj = tj — tj ~ Exp(cjj)
Then information propagates by gradually activating more nodes.

Definition (Influence)

Given S, the expected number of activated nodes at time t is
called the influence of S, denoted by p(t; S).



Influence prediction

Question:
Given S, how to compute influence p(t; S) for all t?



Influence prediction has many applications

» Influence maximization: fix t and n € N, solve

imi t;S 15 <
mag%rp/lze,u( ) st |S|<n

» Qutbreak detection

» Propagation control



Exact solution? Not tractable.

Exact solution requires working in a state space of size O(2K).



N(t) and its transition states

From now on, since S is arbitrary and fixed, we drop it for notation
simplicity.

Let N(t) be the (random) number of activated nodes in G, and
My be the state that N(t) = k. Then

/\/’0—\.. qkr(ltt)- qkf) m

where qgi(t) is the transition rate from My to M1, and r(t) is
the transition rate from M, to M,_; at time t.



Key quantities

Number of activated nodes:
N(t)
Probability that N(t) is in state Mj:
pi(t) = Pr(N(t) = k)

Influence (i.e., expected number of activated nodes):

K
u(t) = E[N(t) Z

Note the key is to compute {pk(t)}!



Fokker-Planck equation

Recall the state transition graph:

Clklf) qkt)
Mo = - [Me] = [Mia|= o= M
r(t

The Fokker-Planck equation is a system of deterministic
differential equations that governs the time evolution of pi(t):

po(t) = —qo(t)po(t) + ri(t)pa(t),
Pk(t) = qe-1(t)pr—1(t) — [qu(t) + re(t)]px(t)

+ rk+1(t)pk+1(t), for1<k<K-1,
Pk (t) = ar-1(t)pk—-1(t) — rk(t)pk (t).



Matrix formulation

The matrix form of the Fokker-Planck equation above is

P'(t) = p(1)[Q(t) + R(t)]

where p(t) = (po(t), p1(t), ..., pk(t)) € RE+L s a row vector,
and Q(t) is a bidiagonal matrix:

—qo(t)  qo(t)
—qi(t) qu(t)

Q(t) =

_CIKf.l(t) qr—1(t)
0

and R(t) is a (lower) bidiagonal matrix with rg(t)’s.




Composition of @ and R

Theorem

Let Sk :={U C V :|U| = k} and Pr(t; U) be the probability that
U € Sk is activated first. Define

=3 3 ay BW=8 A(WV=Y v
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Similarly B(U) = >;cy Bi and v(U) = >icyvi- Then there are

= > [a(U) + B(U) Px(t; U)

Uues

n(0) = 3 A(U)Pr(t; U)

UesS

fork=0,1,....K.



Estimate g,

We assume no self-activation and recovery, and provide two ways
to estimate qg:
» Based on shortest distance (FPE-dist):
Define the distance from i to j by 1/, let U; € Sy pick the
k nodes with shortest distance to S, and set

Gk = a(Uy)

» Based on overall probability (FPE-tree):
For k =1,2,..., recursively find {UL,..., U]} C Sk with
large probabilities in Si, which essentially constructs a tree of
nodes {U}} with relative probabilities in each layer k. Set

my

G =S a(UL) Pr(U))

=1



Experiment setup

Generating propagation networks:

» Various types of networks (directed graphs): Erdés-Rényi's
random, small-world, scale-free, Kronecker, etc.

» Various sizes K and densities (average node out-degree).

» For each edge (/,j) € E, draw a; i'i'vd'Unif(O, 1).

Ground truth by MCMC:

Obtained by simulating 5000 cascades and calculating average
number of activated nodes. (expensive!)



Experimental results: small networks
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Figure: Left: Erdés-Rényi's network (K = 16, d*'¢ = 4). Middle:
Erd8s-Rényi's network (K = 32, d®'& = 4). Right: Small-world network
(K =32, d®& = 4). Here d®& = (1/K) Y, |N?™|.



Experimental results: large networks
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Figure: Left: Erd8s-Rényi's network (K = 1024, d*'¢ = 8). Middle:
Small-world network (K = 1024, d®'¢ = 6). Right: Scale-free network
(K = 1024, d*& = 6).



More experimental results
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Figure: Left: Dense Erdés-Rényi's random network (K = 1024 and
d?V& = 32, 64,128 respectively). Middle: Influence prediction on the
same Kronecker network of size 1024 using three different choices of
source set 51, 52,53 (|Si] = 10). Right: Comparison with ConTinEst, a
state-of-the-art method that learns coverage function using sample
cascades.




Why is performance so good?

The estimation of Fokker-Planck equation coefficients g seems
crude, but why the performance is so good?

We answer this question by building relationship between error in
qk(t) and error in p(t).



Error analysis

Lemma

Let € € (0,1), and p and p solve p'(t) = p(t)Qx+1(t) and

P'(t) = p(t)Q«(t) respectively, where Qi has qj in Q replaced by
g for j > k. If every G satisfies

)0 sl D) e

qx(t) aktmin(d, K — k) 2 +e
where & = max{a; : (i,j) € E}, d = max{|N®t| : i € V'}, then
5i(6) = pi(t), forj=0,... k1
12i(t) = pj(t)l/pj( ¢, forj=k,....,K—-1

) <
|A(t) = u(t)]/p(t) <€



Error analysis

Theorem

Let e € (0,1), and p(t) and f(t) solve p'(t) = p(t)Q(t) and
p'(t) = p(t)Q(t) respectively, where Q has g in Q replaced by
for all k. If every qy satisifies

|Gk (t) — ax(t)] _ min{ log(1 + 5) € }

qk(t) aktmin(d, K — k) 2+¢
L K 1 K—j _
and let ck(t) :== £ >0 i (gt)) where § := max,{qx}, then
(i t
W <[(1+ ) — 1] min {1,cx(t)e 2}, Vit >0,

where o ;= min{a; : (i,j) € E}.



Error analysis

Corollary

Suppose p(t), p(t), u(t), i(t) are defined and conditions for & and
« as above. Let ¢ > 0 and c € (0,a), then

|(t) = p(t)|/p(t) < ee™
as long as the estimated §(t) satisfies

|Gk(t) — ax(t)| _a—c  loge — Klog?2 — log ck(t)
ak(t) ~ Kdk Kqgxt
=Cx — O (logt/t)

for each k =0,1,..., K — 1, where G := ak min{d, K — k} and
Ck = (g— C)/Kﬁk.



Experimental results
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Figure: gk (red) and gk (blue) for for k = 10,70,130,190 in
Erd8s-Rényi's network (K = 300, d®'& = 150, «; g Unif(0, 1)).



Experimental results
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Figure: Upper left: 12—l ¢ 4 — 30, 70,130, 190. Upper right:

pi(t)

BO-4OL " Lower left: fi(t) and pi(t). Lower right: CPU time (in
seconds) to solve Fokker-Planck equation for networks with various sizes.



Summary

In this work, we have
» Built a general framework for influence prediction based on
time evolutions of pg(t).

» Provided methods to estimate coefficients of the related
Fokker-Planck equations.

» Established relationship between coefficient error and
prediction error.

Future work

» Non-Markov propagations.
» Prediction directly based on historical cascade data.

» and more ...



Thank you

o 5 = = E DA



