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Problem description

Propagation network:

I G = (V ,E ) network (directed graph)

I S ⊂ V source set

I {αij : (i , j) ∈ E}: tij = tj − ti ∼ Exp(αij)

Then information propagates by gradually activating more nodes.

Definition (Influence)

Given S , the expected number of activated nodes at time t is
called the influence of S , denoted by µ(t; S).



Influence prediction

Question:
Given S , how to compute influence µ(t;S) for all t?



Influence prediction has many applications

I Influence maximization: fix t and n ∈ N, solve

maximize
S⊂V

µ(t; S) s.t. |S | ≤ n

I Outbreak detection

I Propagation control



Exact solution? Not tractable.

Exact solution requires working in a state space of size O(2K ).



N(t) and its transition states

From now on, since S is arbitrary and fixed, we drop it for notation
simplicity.

Let N(t) be the (random) number of activated nodes in G , and
Mk be the state that N(t) = k . Then

M0 
 · · ·
 Mk−1
qk−1(t)


rk (t)

Mk

qk (t)



rk+1(t)
Mk+1 
 · · ·
 MK

where qk(t) is the transition rate from Mk to Mk+1, and rk(t) is
the transition rate from Mk to Mk−1 at time t.



Key quantities

Number of activated nodes:

N(t)

Probability that N(t) is in state Mk :

ρk(t) = Pr(N(t) = k)

Influence (i.e., expected number of activated nodes):

µ(t) = E[N(t)] =
K∑

k=0

kρk(t)

Note the key is to compute {ρk(t)}!



Fokker-Planck equation

Recall the state transition graph:

M0 
 · · ·
 Mk−1
qk−1(t)


rk (t)

Mk

qk (t)



rk+1(t)
Mk+1 
 · · ·
 MK

The Fokker-Planck equation is a system of deterministic
differential equations that governs the time evolution of ρk(t):

ρ′0(t) = −q0(t)ρ0(t) + r1(t)ρ1(t),

ρ′k(t) = qk−1(t)ρk−1(t)− [qk(t) + rk(t)]ρk(t)

+ rk+1(t)ρk+1(t), for 1 ≤ k ≤ K − 1,

ρ′K (t) = qK−1(t)ρK−1(t)− rK (t)ρK (t).



Matrix formulation

The matrix form of the Fokker-Planck equation above is

ρ′(t) = ρ(t)[Q(t) + R(t)]

where ρ(t) = (ρ0(t), ρ1(t), . . . , ρK (t)) ∈ RK+1 is a row vector,
and Q(t) is a bidiagonal matrix:

Q(t) =



−q0(t) q0(t)
−q1(t) q1(t)

. . .
. . .
. . .

. . .

−qK−1(t) qK−1(t)
0


and R(t) is a (lower) bidiagonal matrix with rk(t)’s.



Composition of Q and R

Theorem
Let Sk := {U ⊂ V : |U| = k} and Pr(t;U) be the probability that
U ∈ Sk is activated first. Define

α(U) =
∑
i∈U

∑
j∈Nout

i ∩Uc

αij , β(U) =
∑
i∈U

βi , γ(U) =
∑
i∈U

γi

Similarly β(U) =
∑

i∈U βi and γ(U) =
∑

i∈U γi . Then there are

qk(t) =
∑
U∈Sk

[α(U) + β(Uc)]Pr(t;U)

rk(t) =
∑
U∈Sk

γ(U)Pr(t;U)

for k = 0, 1, . . . ,K.



Estimate qk

We assume no self-activation and recovery, and provide two ways
to estimate qk :

I Based on shortest distance (FPE-dist):
Define the distance from i to j by 1/αij , let U∗k ∈ Sk pick the
k nodes with shortest distance to S , and set

q̂k = α(U∗k )

I Based on overall probability (FPE-tree):
For k = 1, 2, . . . , recursively find {U1

k , . . . ,U
mk
k } ⊂ Sk with

large probabilities in Sk , which essentially constructs a tree of
nodes {U l

k} with relative probabilities in each layer k. Set

q̂k =

mk∑
l=1

α(U l
k)Pr(U l

k)



Experiment setup

Generating propagation networks:

I Various types of networks (directed graphs): Erdős-Rényi’s
random, small-world, scale-free, Kronecker, etc.

I Various sizes K and densities (average node out-degree).

I For each edge (i , j) ∈ E , draw αij
i .i .d .∼ Unif(0, 1).

Ground truth by MCMC:

Obtained by simulating 5000 cascades and calculating average
number of activated nodes. (expensive!)



Experimental results: small networks
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Figure: Left: Erdős-Rényi’s network (K = 16, davg = 4). Middle:
Erdős-Rényi’s network (K = 32, davg = 4). Right: Small-world network
(K = 32, davg = 4). Here davg = (1/K )

∑
i |Nout

i |.



Experimental results: large networks
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Figure: Left: Erdős-Rényi’s network (K = 1024, davg = 8). Middle:
Small-world network (K = 1024, davg = 6). Right: Scale-free network
(K = 1024, davg = 6).



More experimental results
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Figure: Left: Dense Erdős-Rényi’s random network (K = 1024 and
davg = 32, 64, 128 respectively). Middle: Influence prediction on the
same Kronecker network of size 1024 using three different choices of
source set S1,S2,S3 (|Si | = 10). Right: Comparison with ConTinEst, a
state-of-the-art method that learns coverage function using sample
cascades.



Why is performance so good?

The estimation of Fokker-Planck equation coefficients qk seems
crude, but why the performance is so good?

We answer this question by building relationship between error in
qk(t) and error in µ(t).



Error analysis

Lemma
Let ε ∈ (0, 1), and ρ and ρ̂ solve ρ′(t) = ρ(t)Qk+1(t) and
ρ̂′(t) = ρ̂(t)Qk(t) respectively, where Qk has qj in Q replaced by
q̂j for j ≥ k. If every q̂k satisfies

|q̂k(t)− qk(t)|
qk(t)

≤ min

{
log(1 + ε

2)

ᾱkt min(d̄ ,K − k)
,

ε

2 + ε

}
where ᾱ = max{αij : (i , j) ∈ E}, d̄ = max{|Nout

i | : i ∈ V }, then

ρ̂j(t) = ρj(t), for j = 0, . . . , k − 1

|ρ̂j(t)− ρj(t)|/ρj(t) ≤ ε, for j = k , . . . ,K − 1

|µ̂(t)− µ(t)|/µ(t) ≤ ε



Error analysis

Theorem
Let ε ∈ (0, 1), and ρ(t) and ρ̂(t) solve ρ′(t) = ρ(t)Q(t) and
ρ̂′(t) = ρ̂(t)Q̂(t) respectively, where Q̂ has qk in Q replaced by q̂k
for all k. If every qk satisifies

|q̂k(t)− qk(t)|
qk(t)

≤ min

{
log(1 + ε

2)

ᾱkt min(d̄ ,K − k)
,

ε

2 + ε

}
and let cK (t) := 1

K

∑K−1
j=0

K−j
j! (q̄t)j where q̄ := maxk{qk}, then

|µ̂(t)− µ(t)|
µ(t)

≤ [(1 + ε)K − 1] min
{

1, cK (t)e−αt
}
, ∀t ≥ 0,

where α := min{αij : (i , j) ∈ E}.



Error analysis

Corollary

Suppose ρ(t), ρ̂(t), µ(t), µ̂(t) are defined and conditions for ᾱ and
α as above. Let ε > 0 and c ∈ (0, α), then

|µ̂(t)− µ(t)|/µ(t) ≤ εe−ct

as long as the estimated q̂k(t) satisfies

|q̂k(t)− qk(t)|
qk(t)

≤α− c

Kq̄k
+

log ε− K log 2− log cK (t)

Kq̄kt

=Ck − O (log t/t)

for each k = 0, 1, . . . ,K − 1, where q̄k := ᾱk min{d̄ ,K − k} and
Ck := (α− c)/Kq̄k .



Experimental results
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Figure: q̂k (red) and qk (blue) for for k = 10, 70, 130, 190 in

Erdős-Rényi’s network (K = 300, davg = 150, αij
i.i.d.∼ Unif(0, 1)).
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Figure: Upper left: |ρ̂k (t)−ρk (t)|ρk (t)
for k = 30, 70, 130, 190. Upper right:

|µ̂(t)−µ(t)|
µ(t) . Lower left: µ̂(t) and µ(t). Lower right: CPU time (in

seconds) to solve Fokker-Planck equation for networks with various sizes.



Summary

In this work, we have

I Built a general framework for influence prediction based on
time evolutions of ρk(t).

I Provided methods to estimate coefficients of the related
Fokker-Planck equations.

I Established relationship between coefficient error and
prediction error.

Future work

I Non-Markov propagations.

I Prediction directly based on historical cascade data.

I and more ...



Thank you


