
MS200 & MS226: High-Performance Streaming Graph Analysis

10:00–10:20 Me: High-Performance Analysis of Streaming
Graphs

10:25–10:45 A. Erdem Sariyuce and Ali Pinar, Dense
Subgraphs in Temporal Networks: Algorithms
and Analysis

10:50–11:10 Anand Iyer and Ion Stoica, Time-Evolving
Graph Processing on Commodity Clusters

11:15–11:35 Srikanta Tirthapura, et al., Parallel and
Streaming Methods for Real-Time Analysis of
Dense Structures from Graphs

Continued in MS226 this afternoon, 2:15pm–3:50pm.
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MS200 & MS226: High-Performance Streaming Graph Analysis

Continuation of MS200:

2:15–2:35 Elisabetta Bergamini and Henning
Meyerhenke, On Betweenness Centrality
Problems in Dynamic Graphs

2:40–3:00 Sriram Srinivasan and Sanjukta Bhowmick,
Predicting Movement of Vertices Across
Communities in Dynamic Networks

3:05–3:25 Keita Iwabuchi, et al., Large-Scale Dynamic
Graph Processing on HPC Systems

3:30–3:50 Anita Zakrzewska, Creating Dynamic Graphs
from Temporal Data

Some slides to be posted at http://graphanalysis.org.
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High-Performance Analysis of Streaming
Graphs
E. Jason Riedy
School of Computational Science and Engineering
Georgia Institute of Technology SIAM CSE, 2 March 2017
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Motivation and Applications



(insert prefix here)-scale data analysis

Cyber-security Identify anomalies, malicious actors

Health care Finding outbreaks, population epidemiology

Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating markets, smart &
sustainable cities

Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation

Simulation Discrete events, cracking meshes

Changes are important. Cannot stop the world...
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Why Graphs?

Another tool, like dense and sparse linear algebra.

• Combine things with pairwise
relationships

• Smaller, more generic than raw data.
• Taught (roughly) to all CS students...
• Semantic attributions can capture
essential relationships.

• Traversals can be faster than filtering
DB joins.

• Provide clear phrasing for queries
about relationships.
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Potential Applications
• Social Networks

• Identify communities, influences, bridges, trends,
anomalies (trends before they happen)...

• Potential to help social sciences, city planning, and
others with large-scale data.

• Cybersecurity
• Determine if new connections can access a device or
represent new threat in < 5ms...

• Is the transfer by a virus / persistent threat?
• Bioinformatics, health

• Construct gene sequences, analyze protein
interactions, map brain interactions

• Credit fraud forensics⇒ detection⇒ monitoring
• Real-time integration of all the customer’s data
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Streaming graph data
Network data rates:

• Gigabit ethernet: 81k – 1.5M packets per second
• Over 130 000 flows per second on 10 GigE (< 7.7 µs)

Person-level data rates:

• 500M posts per day on Twitter (6k / sec)1
• 3M posts per minute on Facebook (50k / sec)2

But often analyze only changes and not entire graph.

Throughput & latency trade off and expose different
levels of concurrency.

1
www.internetlivestats.com/twitter-statistics/
2
www.jeffbullas.com/2015/04/17/21-awesome-facebook-facts-and-statistics-you-need-to-check-out/
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Streaming graph analysis
Terminology, will go into more details:

• Streaming changes into a massive, evolving graph
• Will compare models later...
• Need to handle deletions as well as insertions

Previous STINGER performance results (x86-64):

Data ingest >2M upd/sec [Ediger, McColl, Poovey, Campbell, &
Bader 2014]

Clustering coefficients >100K upd/sec [R, Meyerhenke, B, E,
& Mattson 2012]

Connected comp. >1M upd/sec [McColl, Green, & B 2013]
Community clustering >100K upd/sec∗ [R & B 2013]
PageRank Up to 40× latency improvement [R 2016]
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Current and Future STINGER
Models



STINGER: Framework for streaming graphs

Slide credit: Rob McColl and David Ediger

• OpenMP + sufficiently POSIX-ish
• Multiple processes for resilience
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Current STINGER model

Pre-process batch:
Sort by source vertex,

reconcile ins/del.

Pre-change hook

Alter graph (may “age off” old edges)

Post-change hook

STINGER
graph

Batch of insertions / deletions

Affected vertices

Change in metric

Streaming Graphs — SIAM CSE MS200, 2 Mar 2017 10/24



Is STINGER’s current model good enough?
Data ingest rates, R-MAT into R-MAT, scales 24 & 30

●

●

●

●

●

●

1e+02

1e+03

1e+04

1e+05

1e+06

1 10 100 1000 10000 1e+05

Batch size

U
pd

at
e 

ra
te

 (
up

d/
s)

platform ● Power8 Haswell Haswell−30

●

● ●

●

● ●0.00316

0.00562

0.01000

0.01778

0.03162

1 10 100 1000 10000 1e+05

Batch size

A
vg

. u
pd

at
e 

tim
e 

(s
)

platform ● Power8 Haswell Haswell−30

Want to add analysis clients without slowing data ingest!

Note that scale 30 starts with 1.1B vertices, 17B edges...
(Different STINGER internal parameters.)
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What if we don’t hold up changes?

Additional STINGER model
Analyze concurrently with the graph changes, and
produce a result correct for the starting graph and
some subset of concurrent changes.3

Sample of other models

• Put in a query, wait for sufficient data [Phillips, et al.]
• Evolving: Sample, accurate w/high-prob.
• Classical: dynamic algorithms, versioned data

3Chunxing Yin, Riedy, Bader. “Validity of Graph Algorithms on
Streaming Data.” January 2017. (in submission)
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Algorithm validity in our model: Example.
Can you compute degrees in an undirected graph (no self
loops) concurrently with changes?

Algorithm: Iterate over vertices, count the number of
neighbors.

1

Compute deg(v1)

1 0

Compute deg(v2)

delete edge

Cannot correspond to an undirected graph plus any
subset of concurrent changes.

Valid for our model? No!

Not incorrect, just not valid for our model.
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Algorithm validity in our model

• What is valid?
• Typical BFS and follow-ons (betweenness centrality)
• Shiloach-Vishkin connected components
• PageRank? (hm.)
• Saved decisions...

• What is invalid?
• Making a decision twice in implementations.

• ∆-stepping SSSP: Decrease a weight below ∆

• Degree optimization: Cross threshold, miss vertex
• Applying old information.

• Labeling in S. Kahan’s components alg.
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Fun properties
Due to Chunxing Yin, under sensible assumptions:

• You can produce a single-change stream to demonstrate
invalidity.

• Algorithms that produce a subgraph of their input cannot be
guaranteed to run concurrently with changes and always
produce snapshot outputs.

In progress:

• Validity for streaming! Apply a algorithm valid for our model.
Also collect the changes during execution. Now update the
result for those changes while more changes accumulate.
Repeat.

• Algorithms like PageRank... Actually nearby to graph + subset?
• Verification for debugging, etc.
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Extracting Interesting Subgraphs



Graphs: Big, nasty hairballs
Yifan Hu’s (AT&T) visualization of the in-2004 data set

http://www2.research.att.com/~yifanhu/gallery.html
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But no shortage of structure...

in-2004, matrix format from Davis, Florida
Sparse Matrix Collection

Jason’s network via LinkedIn Labs

• Locally, there are clusters or communities.
• There are methods for global community detection.
• Also need local communities around seeds for
queries and targeted analysis.
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Seed set expansion
• Seed set expansion finds the “best” subgraph or
communities for a set of vertices of interest

• Many quality criteria: Modularity, conductance-ish,
etc.

• Want to produce smaller expansions for viz. as well
as larger communities for deeper analysis.

• Dynamic agglomerative / modularity algorithms
update larger communities faster than
recomputation [Zakrzewska & Bader]

Streaming Graphs — SIAM CSE MS200, 2 Mar 2017 18/24



PageRank and Katz centrality
Both PageRank and Katz centrality recover blocks in
artificial stochastic block model graphs.
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Working on updating the expanded sets using
incremental iterations:

Updating PageRank [R]:
∆x(k+1) = αAT∆D−1

∆ ∆x(k) +
α(AT∆D−1

∆ − ATD−1)x+ r|∆x(k+1)

Updating Katz:
∆x(k+1) =
αA∆∆x(k) + (r− α∆Ax)|∆x(k+1)
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Streaming seed set expansion

• Work in progress!
• Which seed set expansion methods provide
subgraphs useful for further analysis? How do the
results compare to global analysis?

• We do not want to maintain the entire |V| PR or Katz
vector, only around |S| where S is the output.

• Can we continue applying earlier stopping criteria4
for top-K separation?

4Eisha Nathan, Geoffrey Sanders, James Fairbanks, Van Emden
Henson, David A. Bader. “Graph Ranking Guarantees for Numerical
Approximations to Katz Centrality,” Jan 2017. (in submission, Wed. CSE
poster)
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GPUs for Streaming Graphs?



So... Now what?

• Maintain these communities / subgraphs on or near
accelerators!

• Sending changes may help with the connection
bandwidth problem.

• cuSTINGER [Green & Bader]
• A variant of STINGER for NVIDIA GPUs
• Ingest at rates over 107 updates / sec
• Ingest & triangle count updates at up to 2× 106

upd/s (higher in prep!)
• Amenable to existing high-performance static
analysis kernels like betweenness centrality.

• https://github.com/cuStinger
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So... Now what?

• Maintain these communities / subgraphs on or near
accelerators!

• Sending changes may help with the connection
bandwidth problem.

• Micron Automata (in progress with Aluru, Roy, and
Srivatsava)

• Hardware implementation of non-deterministic finite
automata

• Can be adapted to tackle graph problems!
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So... Now what?

• Maintain these communities / subgraphs on or near
accelerators!

• Sending changes may help with the connection
bandwidth problem.

• Others?
• Examining FPGA + HMC combinations to move closer
to memory (with Young).

• Interest in others?

Streaming Graphs — SIAM CSE MS200, 2 Mar 2017 21/24



Closing



Future directions

• Of course, continue developing streaming / dynamic
/ incremental algorithms.

• For massive graphs, computing small changes is
always a win.

• Improving approximations or replacing expensive
metrics like betweenness centrality would be great.

• Include more external and semantic data.
• If vertices are documents or data records, many
more measures of similarity.

• Only now being exploited in concert with static graph
algorithms.

STINGER represents only some approaches! There are others.

Streaming Graphs — SIAM CSE MS200, 2 Mar 2017 22/24



HPC Lab People
Faculty:

• David A. Bader
• Jason Riedy
• Oded Green∗

Included here:
• Chunxing Lin
• Eisha Nathan
• Anita Zakrzewska

STINGER:

• Robert McColl,
• James Fairbanks∗ (GTRI),
• Adam McLaughlin∗,
• David Ediger∗ (GTRI),
• Jason Poovey (GTRI),

• Daniel Henderson†,
• Karl Jiang†, and
• feedback from users in
industry, government,
academia

Support: DoD, DoE, NSF, Intel, IBM, Oracle, NVIDIA
∗ Ph.D. related to STINGER. † Other previous students.
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STINGER: Where do you get it?

Home: www.cc.gatech.edu/stinger/
Code: git.cc.gatech.edu/git/project/stinger.git/

Gateway to

• code,

• development,

• documentation,

• presentations...

Remember: Academic code, but maturing
with contributions.
Users / contributors / questioners:
Georgia Tech, PNNL, CMU, Berkeley, Intel,
Cray, NVIDIA, IBM, Federal Government,
Ionic Security, Citi, Accenture, ...
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