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Graphs are everywhere…

Social Networks
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Graphs are everywhere…

Gnutella network subgraph
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Graphs are everywhere…
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Graphs are everywhere…

Metabolic	network	of	a	single	cell	organism Tuberculosis
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Plenty of interest in processing them

• Graph DBMS 25% of all enterprises by end of 20171

• Many open-source and research prototypes on distributed graph 
processing frameworks: Giraph, Pregel, GraphLab, GraphX, …

1Forrester Research
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Real-world Graphs are Dynamic

Earthquake	Occurrence	Density
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Real-world Graphs are Dynamic
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Real-world Graphs are Dynamic
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Processing Time-evolving Graphs

Many interesting business and research insights 
possible by processing such dynamic graphs…
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… little or no work in supporting such workloads in 
existing big-data graph-processing frameworks



Challenge #1: Storage
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Challenge #2: Computation
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Challenge #3: Communication
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How do we process time-evolving, 
dynamically changing graphs 

efficiently?
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Sharing Storage
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Storing deltas result in the most optimal storage, but creating 
snapshot from deltas can be expensive!



A Better Storage Solution
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Use a persistent datastructure

Store snapshots in Persistent Adaptive Radix Trees (PART)



Graph Snapshot Index
17

Snapshot 2Snapshot 1

Ve
rt

ex

t1 t2

Snapshot 2Snapshot 1
t1 t2

Ed
ge

Partition

Snapshot ID Management

Shares structure between snapshots, and enables efficient operations



How do we process time-evolving, 
dynamically changing graphs 
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Graph Parallel Abstraction - GAS

Gather: Accumulate information from neighborhood
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Apply: Apply the accumulated value

Scatter: Update adjacent edges & vertices with updated value



Processing Multiple Snapshots
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for (snapshot in snapshots) {
for (stage in graph-parallel-computation) {…}

}
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Reducing Redundant Messages
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for (step in graph-parallel-computation) {
for (snapshot in snapshots) {…}

}

Can potentially avoid large number of redundant messages



How do we process time-evolving, 
dynamically changing graphs 

efficiently?
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Updating Results

• If result from a previous snapshot is available, how can we reuse 
them?
• Three approaches in the past:
• Restart the algorithm

• Redundant computations

• Memoization (GraphInc1)
• Too much state

• Operator-wise state (Naiad2,3)
• Too much overhead
• Fault tolerance
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1Facilitating real- time graph mining, CloudDB ’12
2 Naiad: A timely dataflow system, SOSP ’13
3 Differential dataflow, CIDR ‘13



Key Idea

• Leverage how GAS model executes computation
• Each iteration in GAS modifies the graph by a little
• Can be seen as another time-evolving graph!

• Upon change to a graph:
• Mark parts of the graph that changed
• Expand the marked parts to involve regions for recomputation in every 

iteration
• Borrow results from parts not changed
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Incremental Computation
25

A

B C

D

Iterations

T
im
e

A

A B

A A

A A

A

G1
0 G1

1 G1
2

G2
2

A

B C

A

A B

A

A A

G2
0 G2

1

Larger graphs and more iterations can yield significant improvements



Implementation & Evaluation

• Implemented on Spark 2.0
• Extended dataframes with versioning information and iterate 

operator 
• Extended GraphX API to allow computation on multiple 

snapshots

• Preliminary evaluation on two real-world graphs
• Twitter: 41,652,230 vertices, 1,468,365,182 edges
• uk-2007: 105,896,555 vertices, 3,738,733,648 edges

26



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

St
or
ag
e	
Re

du
ct
io
n

Number	of	Snapshots

Benefits of Storage Sharing
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Significant improvements with 
more snapshots



Benefits of sharing communication
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Benefits of Incremental Computing
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Summary & Future Work

• Processing time-evolving graph efficiently can be useful
• Sharing storage, computation and communication key to efficient 

time-evolving graph analysis
• Code release
• Incremental pattern matching
• Approximate graph analytics
• Geo-distributed graph analytics

api@cs.berkeley.edu
www.cs.berkeley.edu/~api
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