Tegra

ving Graph Processing on

Time-evo

Commodity Clusters

¢ ¢ 6

drise

m

@

Anand lyer

Qifan Pu

% d |
%
Bv - ®
[Y/ V)

/ N)
Joseph Gonzalez lon Stoica

Q
—
Q
E
=
—
Q
=
Q
Q
—
O
N
i
(B
O
—
D

Social Networks

Graphs are everywhere..

Gnutella network subgraph

SNAP@web-Google. 1316100 nodes, 4925011 edges.

Graphs are everywhere...

Metabolic network of a single cell organism Tuberculosis

Plenty of interest in processing them

* Graph DBMS 25% of all enterprises by end of 2017%

* Many open-source and research prototypes on distributed graph
processing frameworks: Giraph, Pregel, GraphLab, GraphyX, ...

'Forrester Research

Real-world Graphs are Dynamic

Earthquake Occurrence Density

eal-world Graphs are Dynamic

L=
=
g,
c
=

_—
Q
—
g
N

e
=
g,
—

)

o

=
o
=

O
D

o=

Processing Time-evolving Graphs

Many interesting business and research insights
possible by processing such dynamic graphs..

.. little or no work in supporting such workloads in
existing big-data graph-processing frameworks

Challenge #1: Storage

Time

A D A D
o
B C B C
G, G,

Redundant storage of graph entities over time

Challenge #2: Computation

Time
A D A D
e
B C B C
G, G,
A D A .
. E
B C B C
R,

R

Wasted computation across snapshots

Challenge #3: Communication

Time

A D A D
oe.
B C B C

G, G, Gs
A < D A -]) X<
-, T 2%
< B 53 C B 53 o XK

Duplicate messages sent over the network

How do we process time-evolving,
dynamically changing graphs
efficjently?

Teqra'ﬁ&'

Sharing Storage

Time

LI:
ie E

g, 6g,

Storing deltas result in the most optimal storage, but creating
snapshot from deltas can be expensive!

A Better Storage Solution

Use a persistent datastructure

Snapshot | Snapshot 2
t, tz’

HEENIEEEERE IIIII-/ D:Ii.

Store snapshots in Persistent Adaptive Radix Trees (PART)

Graph Snapshot Index

Snapshot | ' Snapshot 2 p
t, ‘

_ !
\ Partition///

Shares structure between snapshots, and enables efficient operations

Edge

VETTEX

How do we process time-evolving,
dynamically changing graphs
efficjently?

j) Communicaton

‘Teqra'\?&'

Graph Parallel Abstraction - GAS

Gather: Accumulate information from neighborhood

Apply: Apply the accumulated value

Scatter: Update adjacent edges & vertices with updated value

Processing Multiple Snapshots

Time

A = D A >t DA

. ¥ 2N
B C

<] 03 C = Y
Gl Gz G3

for (snapshot in snapshots) {
for (stage in graph-parallel-computation) {..}

¥

Reducing Redundant Messages

for (step in graph-parallel-computation) {
for (snapshot in snapshots) {..}
}

Time

LI;‘ :

b)) X
%t
X

Can potentially avoid [arge number of redundant messages

How do we process time-evolving,
dynamically changing graphs
efficjently?

Teqra'ﬁ&'

Updating Results

o |f result from a previous snapshot is available, how can we reuse
them?

* Three approaches in the past:
* Restart the algorithm
* Redundant computations
e Memoization (Graphinc?)
* Too much state

« Operator-wise state (Naiad?3)
 Too much overhead
* Fault tolerance

;FOCI/#Ohng reo hme raph mmm%, CoudDB

Naiad: Atimely dataflow system
3 Differential dcn‘of ow, CID

Key |dea

* Leverage how GAS model executes computation
» Each iteration in GAS modifies the graph by a little

* (an be seen as another time-evolving graph!

* Upon change to a graph:
* Mark parts of the graph that changed

« Expand the marked parts to involve regions for recomputation in every
iteration

* Borrow results from parts not changed

Incremental Computation

_, lterations

G,°

awn |

Larger graphs and more iterations can yield significant improvements

Implementation & Evaluation

* Implemented on Spark 2.0

» Extended dataframes with versioning information and iterate
operator

» Extended GraphX API to allow computation on multiple
snapshots

* Preliminary evaluation on two real-world graphs
o Twitter: 41,652,230 vertices, 1,468,365,182 edges
* UR-2007: 105,896,555 vertices, 3,738,733,648 edges

Benefits of Storage Sharing

4.5
4
'cc_) 35 Significant improvements with
T 3 more snapshots
>
S 25
[
o 2
<
o 1.5 Datastructure
&A1 overheads
1l
0

123456 7 8 91011121314151617 181920
Number of Snapshots

Benefits of sharing communication

5000

4500 B GraphX M Tegra
4000
3500
@ 3000
U 2500
E 2000
1500
1000 l l |
oo ghhhERhhRhRhEhhbhE

1 23 456 7 8 91011121314151617 181920
Number of Snapshots

Benefits of Incremental Computing

20 ¢
©
200
)
g Only 5% of the graph modified in every snapshot
|_
~ 150
O
IS 100
5 50x reduction by processing only the modified part
Q.
=
s 0 \ ——Incremental ---Full Computation
@)
0

0 5 10 15 20
Snapshot ID

Summary & Future Work

* Processing time-evolving graph efficiently can be useful

» Sharing storage, computation and communication Rey to efficient
time-evolving graph analysis

* (ode release

* Incremental pattern matching

* Approximate graph analytics

* (eo-distributed graph analytics

api@cs.berReley.edu

www.cs.berkeley.edu/~api

