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Social Networks



Graphs are everywhere..

Gnutella network subgraph



SNAP@web-Google. 1316100 nodes, 4925011 edges.



Graphs are everywhere...

Metabolic network of a single cell organism Tuberculosis



Plenty of interest in processing them

* Graph DBMS 25% of all enterprises by end of 2017%

* Many open-source and research prototypes on distributed graph
processing frameworks: Giraph, Pregel, GraphLab, GraphyX, ...

'Forrester Research



Real-world Graphs are Dynamic

Earthquake Occurrence Density



eal-world Graphs are Dynamic
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Processing Time-evolving Graphs

Many interesting business and research insights
possible by processing such dynamic graphs..

.. little or no work in supporting such workloads in
existing big-data graph-processing frameworks



Challenge #1: Storage
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Redundant storage of graph entities over time



Challenge #2: Computation
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Wasted computation across snapshots



Challenge #3: Communication
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Duplicate messages sent over the network







How do we process time-evolving,
dynamically changing graphs
efficjently?

Teqra'ﬁ&'




Sharing Storage
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Storing deltas result in the most optimal storage, but creating
snapshot from deltas can be expensive!



A Better Storage Solution

Use a persistent datastructure

Snapshot | Snapshot 2
t, tz’
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Store snapshots in Persistent Adaptive Radix Trees (PART)



Graph Snapshot Index
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Shares structure between snapshots, and enables efficient operations
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How do we process time-evolving,
dynamically changing graphs
efficjently?

j ) Communicaton
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Graph Parallel Abstraction - GAS

Gather: Accumulate information from neighborhood

Apply: Apply the accumulated value

Scatter: Update adjacent edges & vertices with updated value




Processing Multiple Snapshots
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for (snapshot in snapshots) {
for (stage in graph-parallel-computation) {..}

¥



Reducing Redundant Messages

for (step in graph-parallel-computation) {
for (snapshot in snapshots) {..}
}
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Can potentially avoid [arge number of redundant messages



How do we process time-evolving,
dynamically changing graphs
efficjently?
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Updating Results

o |f result from a previous snapshot is available, how can we reuse
them?

* Three approaches in the past:
* Restart the algorithm
* Redundant computations
e Memoization (Graphinc?)
* Too much state

« Operator-wise state (Naiad?3)
 Too much overhead
* Fault tolerance

;FOCI/#Ohng reo hme raph mmm%, CoudDB

Naiad: Atimely dataflow system
3 Differential dcn‘of ow, CID




Key |dea

* Leverage how GAS model executes computation
» Each iteration in GAS modifies the graph by a little

* (an be seen as another time-evolving graph!

* Upon change to a graph:
* Mark parts of the graph that changed

« Expand the marked parts to involve regions for recomputation in every
iteration

* Borrow results from parts not changed



Incremental Computation
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Larger graphs and more iterations can yield significant improvements




Implementation & Evaluation

* Implemented on Spark 2.0

» Extended dataframes with versioning information and iterate
operator

» Extended GraphX API to allow computation on multiple
snapshots

* Preliminary evaluation on two real-world graphs
o Twitter: 41,652,230 vertices, 1,468,365,182 edges
* UR-2007: 105,896,555 vertices, 3,738,733,648 edges



Benefits of Storage Sharing
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Benefits of sharing communication
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Benefits of Incremental Computing
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Summary & Future Work

* Processing time-evolving graph efficiently can be useful

» Sharing storage, computation and communication Rey to efficient
time-evolving graph analysis

* (ode release

* Incremental pattern matching

* Approximate graph analytics

* (eo-distributed graph analytics

api@cs.berReley.edu

www.cs.berkeley.edu/~api




