
Tegra
Time-evolving Graph Processing on 
Commodity Clusters 

Anand Iyer Joseph GonzalezQifan Pu Ion Stoica

SIAM CSE 17
2 March 2017



Graphs are everywhere…

Social Networks

1



Graphs are everywhere…

Gnutella network subgraph

2



Graphs are everywhere…
3



Graphs are everywhere…

Metabolic	network	of	a	single	cell	organism Tuberculosis

4



Plenty of interest in processing them

• Graph DBMS 25% of all enterprises by end of 20171

• Many open-source and research prototypes on distributed graph 
processing frameworks: Giraph, Pregel, GraphLab, GraphX, …

1Forrester Research

5



Real-world Graphs are Dynamic

Earthquake	Occurrence	Density

6



Real-world Graphs are Dynamic
7



Real-world Graphs are Dynamic
8



Processing Time-evolving Graphs

Many interesting business and research insights 
possible by processing such dynamic graphs…

9

… little or no work in supporting such workloads in 
existing big-data graph-processing frameworks



Challenge #1: Storage
10

Time

A

B C

G1

A

B C

D

G2

Redundant storage of graph entities over time 

A

B C

D
E

G3



Challenge #2: Computation
11

A

B C

R1

A

B C

D
E

R3

Wasted computation across snapshots

Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

A

B C

D

R2



Challenge #3: Communication
12

A

B C

A

B C

D A

B C

D

E

Time

A

B C

G1

A

B C

D

G2

A

B C

D
E

G3

Duplicate messages sent over the network



How do we process time-evolving, 
dynamically changing graphs 

efficiently?

13

Share Storage
Communication
Computation

Tegra



How do we process time-evolving, 
dynamically changing graphs 

efficiently?

14

Share Storage
Communication
Computation

Tegra



Sharing Storage
15

Time

A

B C

G1

A

B C

δg1

A D

δg2

A

B C

D

G2

A

B C

D
E

G3

C

D
E

δg3

Storing deltas result in the most optimal storage, but creating 
snapshot from deltas can be expensive!



A Better Storage Solution
16

Snapshot 2Snapshot 1
t1 t2

Use a persistent datastructure

Store snapshots in Persistent Adaptive Radix Trees (PART)



Graph Snapshot Index
17

Snapshot 2Snapshot 1

Ve
rt

ex

t1 t2

Snapshot 2Snapshot 1
t1 t2

Ed
ge

Partition

Snapshot ID Management

Shares structure between snapshots, and enables efficient operations



How do we process time-evolving, 
dynamically changing graphs 

efficiently?

18

Share Storage
Communication
Computation

Tegra



Graph Parallel Abstraction - GAS

Gather: Accumulate information from neighborhood

19

Apply: Apply the accumulated value

Scatter: Update adjacent edges & vertices with updated value



Processing Multiple Snapshots
20

for (snapshot in snapshots) {
for (stage in graph-parallel-computation) {…}

}

A

B C

A

B C

D A

B C

D
E

Time

G1 G2 G3



Reducing Redundant Messages
21

A

B C

A

B C

D A

B C

D
E

Time

G1 G2 G3

D

BCBA

AAA

B C

D
E

for (step in graph-parallel-computation) {
for (snapshot in snapshots) {…}

}

Can potentially avoid large number of redundant messages



How do we process time-evolving, 
dynamically changing graphs 

efficiently?

22

Share Storage
Communication
Computation

Tegra



Updating Results

• If result from a previous snapshot is available, how can we reuse 
them?
• Three approaches in the past:
• Restart the algorithm

• Redundant computations

• Memoization (GraphInc1)
• Too much state

• Operator-wise state (Naiad2,3)
• Too much overhead
• Fault tolerance

23

1Facilitating real- time graph mining, CloudDB ’12
2 Naiad: A timely dataflow system, SOSP ’13
3 Differential dataflow, CIDR ‘13



Key Idea

• Leverage how GAS model executes computation
• Each iteration in GAS modifies the graph by a little
• Can be seen as another time-evolving graph!

• Upon change to a graph:
• Mark parts of the graph that changed
• Expand the marked parts to involve regions for recomputation in every 

iteration
• Borrow results from parts not changed

24



Incremental Computation
25

A

B C

D

Iterations

T
im
e

A

A B

A A

A A

A

G1
0 G1

1 G1
2

G2
2

A

B C

A

A B

A

A A

G2
0 G2

1

Larger graphs and more iterations can yield significant improvements



Implementation & Evaluation

• Implemented on Spark 2.0
• Extended dataframes with versioning information and iterate 

operator 
• Extended GraphX API to allow computation on multiple 

snapshots

• Preliminary evaluation on two real-world graphs
• Twitter: 41,652,230 vertices, 1,468,365,182 edges
• uk-2007: 105,896,555 vertices, 3,738,733,648 edges

26



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

St
or
ag
e	
Re

du
ct
io
n

Number	of	Snapshots

Benefits of Storage Sharing
27

Datastructure
overheads

Significant improvements with 
more snapshots



Benefits of sharing communication
28

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m
e	
(s
)

Number	of	Snapshots

GraphX Tegra



Benefits of Incremental Computing
29

0

50

100

150

200

250

0 5 10 15 20

Co
m
pu

ta
tio

n	
Ti
m
e	
(s
)

Snapshot	ID	

Incremental Full	Computation

Only 5% of the graph modified in every snapshot

50x reduction by processing only the modified part



Summary & Future Work

• Processing time-evolving graph efficiently can be useful
• Sharing storage, computation and communication key to efficient 

time-evolving graph analysis
• Code release
• Incremental pattern matching
• Approximate graph analytics
• Geo-distributed graph analytics

api@cs.berkeley.edu
www.cs.berkeley.edu/~api

30


