

Parallel Algorithms for Small-world Network Analysis and Partitioning (SNAP)

David A. Bader and Kamesh Madduri

Georgia College of Tech Computing Computing **Computational Science and Engineering**

Overview

- Informatics networks, small-world topology
- Community Identification/Graph partitioning
- The modularity measure for community structure detection
- SNAP: An open-source, parallel graph framework for exploratory analysis of largescale networks
- Parallel Community Identification Algorithms for large-scale networks

Power Distribution Networks

Internet backbone

Social Networks

Large scale graph problems arise from a variety of sources

Transportation Networks

VLSI Design

Computational Science and Engineering

Small-world Networks

 Graph abstractions and algorithms are extensively used to analyze massive social, technological and biological datasets

Social networks

Community identification, Security and surveillance, viral marketing.

Computational Biology

Systems biology, disease modeling, behavioral ecology. Georgia Tech Computing Computing

Images sources: visualcomplexity.com

Interaction Networks

 Analysis of massive small-world interaction networks poses new computational challenges

Novel approaches

Community Structure

- Implicit communities in largescale networks are of interest in many cases
 - WWW
 - Social networks
 - Citation networks
- Community structure detection is usually formulated as a graph clustering problem
- Properties of communities may be different from properties of the entire network

Clustering/Partitioning/Min Cut

PROBLEM	Clustering	MinCut	Graph Partitioning
Objective	Minimize an appropriate measure	Minimize cut size	Minimize cut size
Balance of partition	Sizes may differ	Sizes may differ	Equal sizes
Cardinality of partition	To be computed	To be computed	Input parameter

Community Identification/Graph partitioning

- Graph partitioning is a related problem, but not identical to community identification
- Objective function in graph partitioning: minimize the edge cut, while trying to balance the number of vertices in each partition

Metrics: coverage, conductance, performance

 Objective function in clustering: informally, identify/extract "dense" sub-graphs

Metrics: intra-cluster vs. inter-cluster edges

Related Work: Partitioning Algorithms from Scientific Computing

- Theoretical and empirical evidence suggests that existing techniques from scientific computing perform poorly on small-world networks
- Low diameter and heavy-tailed degree distribution pose a challenge
- [Mihail, Papadimitriou '02] Spectral properties of powerlaw graphs are skewed in favor of high-degree vertices
- [Lang '04] On using spectral techniques, "Cut quality varies inversely with cut balance" in social graphs: Yahoo! IM graph, DBLP collaborations
- [Abou-Rjeili, Karypis '06] Multilevel partitioning heuristics give large edge-cut for small-world networks, new coarsening schemes necessary

(Lagra

Modularity

- [Newman, Girvan '03] Measure based on optimizing inter-cluster density over intra-cluster sparsity.
- $C = (C_1, ..., C_k)$: partition of V such that $C_i \neq \phi$ and $C_i \cap C_j = \phi$; $m(C_i)$: no. of intra-cluster edges

$$Q(C) = \sum_{i} \left[\frac{m(C_{i})}{m} - \left(\frac{\sum_{v \in C_{i}} \deg(v)}{2m} \right)^{2} \right]$$

- If a particular clustering has no more intra-cluster edges than would be expected by random chance, we have Q = 0
- Values greater than 0.3 indicate community structure in a network
- [Brandes '07] Maximizing modularity is NP-complete

College of

Computing

Computational Science and Engineering

Modularity-maximizing community identification algorithms

Algorithm	Clustering Approach	Algorithmic Technique	Complexity
Newman, Girvan '03	global, divisive	greedy, centrality-based	O(n ³)
Clauset et al. '04	global, agglomerative	greedy	O(nlog ² n)
Duch, Arenas '05	global, divisive	extremal optimization	O(n ² log ² n)
Djidjev '06	global, divisive	greedy, multi- level partitioning	O(n ²)
Newman '06	global, divisive	spectral	O(n ² log n)
Brandes '07	agglomerative	greedy	O(n²log n)
			Georgia Tech Computing Computing

Community Identification

- Known algorithms are compute-intensive: O(n²), and in some cases O(n³)
- Current approaches do not exploit the small-world network topology
- How beneficial is preprocessing?
- Can we design faster heuristics?

SNAP: A parallel graph framework for smallworld networks

Computational Science and Engineering

SNAP

- An open-source parallel graph framework for analyzing small-world interaction networks
- Parallel algorithms optimized for shared memory manycore, SMP and multithreaded systems

SNAP Framework

- We have designed fast parallel algorithms and efficient implementations for several graph theoretic problems
 - Graph representation
 - Graph kernels: List ranking, Connected Components [ICPP05], Spanning tree [JPDC06], MST [IPDPS04], Graph traversal [ICPP06], Shortest paths [ALENEX07, MTAAP07]
 - Algorithms: Centrality analysis [ICPP06], community identification [Madduri/Bader 07]
 - Applications: Protein-interaction networks [HiCOMB06], social network analysis [Madduri/Bader 07]
- We integrate these implementations into SNAP, with optimizations for small-world networks

Computing

Small-world network optimizations

- Graph representation
 - space-efficient layout
 - different representation for high-degree vertices
- Graph traversal: a level-synchronous approach is suited for low diameter graphs
- Work is assigned to processors with the unbalanced degree distribution in mind
- We try to minimize synchronization overhead in our parallel approaches
- Attention to parallelization granularity

Computational Science and Engineering

Parallel Performance: BFS and Shortest Paths

Modularity-maximizing community identification algorithms

Algorithm	Clustering Approach	Algorithmic Technique	Complexity
Newman, Girvan '03	global, divisive	greedy, centrality-based	O(n ³)
Clauset et al. '04	global, agglomerative	greedy	O(nlog ² n)
Duch, Arenas '05	global, divisive	extremal optimization	O(n ² log ² n)
Djidjev '06	global, divisive	groody, multi-level partitioning	O(n ²)
Newman '06	global, divisive	ral	O(n ² log n)
Brandes '07	agglomerative	ју	O(n²log n)

pBD	global, divisive	greedy, centrality- based	O(n ³)
pMA	global, agglomerative	greedy	O(nlog ² n)
pLA	local, agglomerative	Greedy, clustering coefficient-based	O(nlog n)
		Georgia Tech	College of Computting Computing

Iteratively remove potential *inter-community* edges

Iteratively remove potential *inter-community* edges

College of Computting Computational Science and Engineering

Iteratively remove potential *inter-community* edges

College of Computing Computing

Iteratively remove potential *inter-community* edges

College of Computing Computing

Iteratively remove potential *inter-community* edges

- How do we identify these edges?

College of Computting Computing

Iteratively remove potential *inter-community* edges

- How do we identify these edges?

Newman-Girvan '03

- Compute *edge betweenness* scores to determine cut-edges
- Use the modularity metric to quantify community structure

Betweenness Centrality (BC)

• Key metric in social network analysis [Freeman '77, Goh '02, Newman '03, Brandes '03]

$$BC(e) = \sum_{s \neq t \in V} \frac{\sigma_{st}(e)}{\sigma_{st}}$$

Georgia Tech

- σ_{st} -- No. of shortest paths between vertices s and t
- $\sigma_{st}(v)$ -- No. of shortest paths between vertices s and t passing through edge e
- Exact BC is compute-intensive: O(mn)

Centrality analysis: previous work

- Design and implementation of *parallel algorithms* for evaluating Betweenness and other Centrality metrics, *optimized for scale-free sparse graphs*
- Capability to solve real-world instances more than three orders of magnitude larger than current SNA packages!
- We analyze BC scores for several large-scale real datasets: patent citation networks, movieactor, and protein-interaction networks

Parallel Performance: Betweenness Centrality

Approximate Betweenness-based Divisive Algorithm (pBD)

m Iterations:

- 1. Calculate betweenness scores of all the edges in the graph in parallel
- 2. Find the edge with the highest score and remove it from the network
- 3. Extract connected components of the graph
- 3. Compute modularity of resulting clustering in parallel
- Note: Betweenness scores are recalculated in every iteration
- We need to only determine the edge with the highest betweenness in each iteration
- Preprocessing routines: biconnected components, strongly connected components, sparsification

Approximating Betweenness Centrality [Bader, Kintali, Madduri, Mihail '07]

- Novel approximation algorithm for determining the betweenness of a specific vertex or edge in a graph
- Adaptive in the number of samples (graph traversals) – the work done varies with the information obtained in each sample
- We prove high-probability bounds on the error with a fixed number of samples
- In practice, we observe that high-centrality entities can be estimated with less than 20% error, by sampling just 5% of the vertices
- 20X speedup over exact betweenness centrality

College of

Computind

28

Approximate Betweenness-based Divisive Algorithm (pBD)

- Identify highest centrality edge using the approximate betweenness algorithm
- Run fast auxiliary kernels (biconnected components) to determine critical edges in graph
- Once the graph is broken into a sizeable number of components, compute centrality score of each component in parallel

Greedy Agglomerative Clustering Algorithm (pMA)

- Start with *n* singleton communities
- Iteratively merge the pair of communities that result in the greatest increase in modularity
 - Maintain a priority queue of possible community merges
- Update overall modularity score after merge
- At each iteration, the community-pair costs are computed in parallel. The community modularity update step is also parallelized.

Greedy Local Aggregation Algorithm (pLA)

- Previous approaches to maximizing modularity rely on global heuristics (an vertex/edge-ranking criterion) on every iteration
- pLA: we order vertices only once, and then use a local heuristic (clustering coefficient) for forming communities
- Start from randomly chosen vertices in the graph, inspect their neighborhoods, and iteratively build clusters
- Discard community if edge cut is above a threshold

Modularity comparison with other approaches

		Modularity Q				
Network	n	GN	pBD	pMA	pLA	Best known
Karate	34	0.401	0.397	0.381	0.397	0.431
Political books	105	0.509	0.502	0.498	0.487	0.527
Jazz musicians	198	0.405	0.405	0.439	0.398	0.445
Metabolic	453	0.403	0.402	0.402	0.402	0.435
E-mail	$1,\!133$	0.532	0.547	0.494	0.487	0.574
Key signing	$10,\!680$	0.816	0.846	0.733	0.794	0.855

Jana

Experimental Study

- Experiments run on the Sun Fire T2000 (8-cores, 4 threads per core, UltraSparc T1 processor)
- Large-scale networks used:

Label	Network	n	m	Type
PPI	human protein interaction network	8,503	32,191	undirected
Citations	Citation network from KDD Cup 2003	27,400	352,504	directed
DBLP	CS publication coauthorship network	$310,\!138$	1,024,262	undirected
NDwww	web-crawl (nd.edu)	325,729	1,090,107	directed
Actor	IMDB movie-actor network	392,400	31,788,592	undirected
RMAT-SF	synthetic small-world network	400,000	$1,\!600,\!000$	undirected

pBD Performance (Sun Fire T2000)

pLA

pMA and pLA Performance (Sun Fire T2000)

рМА

pBD speedup relative to GN (Parallel speedup on Sun Fire T2000)

College of Computing Computing

pLA and pMA Parallel Speedup on large-scale graph instances (Sun Fire T2000)

Observations

- pBD is 10-30x faster than GN with very little loss in quality
- Multithreaded implementations of all three algorithms scale well on the Sun Fire T2000
- Speedup achieved from preprocessing kernels depends on the graph topology
 – NDwww, Citations: significant improvement

Conclusions

- We present three new parallel approaches for community identification in small-world networks
- SNAP: an open-source parallel framework for large-scale network analysis
 - http://www.cc.gatech.edu/~kamesh/SNAP
 - <u>http://www.graphanalysis.org</u>

Acknowledgment of Support

