
Parallel Algorithms for Small-world Network
Analysis and Partitioning (SNAP)a ys s a d a t t o g (S)

David A. Bader and Kamesh Madduri

Overview

• Informatics networks, small-world topology
C it Id tifi ti /G h titi i• Community Identification/Graph partitioning

• The modularity measure for community
t t d t tistructure detection

• SNAP: An open-source, parallel graph
f k f l t l i f lframework for exploratory analysis of large-
scale networks
P ll l C it Id tifi ti• Parallel Community Identification
Algorithms for large-scale networks

2

Power Distribution Networks Internet backbone Social Networks

Large scale graph problems arise from a variety of sources

3

Transportation Networks VLSI Design Computational Biology

Small-world Networks

• Graph abstractions and algorithms are extensively used
to analyze massive social technological and biologicalto analyze massive social, technological and biological
datasets

Social networks Computational Biology

Community identification,
Security and surveillance,

Systems biology,
disease modeling,

4

Secu ty a d su e a ce,
viral marketing.

g,
behavioral ecology.

Images sources:
visualcomplexity.com

Interaction Networks

• Analysis of massive small-world interaction
networks poses new computational challengesnetworks poses new computational challenges

Novel approaches

Spectral
techniques

Data stream
algorithms

Classical graph
algorithms

Dynamic graph
algorithms

Complex Network
Analysis &

Empirical studies

Large-scale Information
Network Analysis

Empirical studies

Many-core Stream
Realistic modeling

Affordable exascale

5

y
computing

Enabling technologies

data storage

Community Structure
• Implicit communities in large-

scale networks are of interest in
many cases
– WWW

Social networks– Social networks
– Citation networks

• Community structure detection
i ll f l t d his usually formulated as a graph
clustering problem

• Properties of communities mayProperties of communities may
be different from properties of
the entire network

6

Clustering/Partitioning/Min Cut

PROBLEM Clustering MinCut Graph PartitioningPROBLEM Clustering MinCut Graph Partitioning

Objective Minimize an
appropriate
measure

Minimize cut
size

Minimize cut size

measure
Balance of
partition

Sizes may differ Sizes may
differ

Equal sizes

Cardinality of To be computed To be Input parameterCardinality of
partition

To be computed To be
computed

Input parameter

7

Community Identification/Graph partitioning

• Graph partitioning is a related problem, but not
identical to community identificationidentical to community identification

• Objective function in graph partitioning: minimize
the edge cut while trying to balance the numberthe edge cut, while trying to balance the number
of vertices in each partition
– Metrics: coverage, conductance, performanceMetrics: coverage, conductance, performance

• Objective function in clustering: informally,
identify/extract “dense” sub-graphsy g p
– Metrics: intra-cluster vs. inter-cluster edges

8

Related Work: Partitioning Algorithms
from Scientific Computingfrom Scientific Computing
• Theoretical and empirical evidence suggests that existing

techniques from scientific computing perform poorly on
ll ld t ksmall-world networks

• Low diameter and heavy-tailed degree distribution pose a
challenge

• [Mihail, Papadimitriou ’02] Spectral properties of power-
law graphs are skewed in favor of high-degree vertices

• [Lang ’04] On using spectral techniques, “Cut quality
i i l i h b l ” i i l h Y h !varies inversely with cut balance” in social graphs: Yahoo!

IM graph, DBLP collaborations
• [Abou-Rjeili, Karypis ’06] Multilevel partitioning heuristics

i l d t f ll ld t kgive large edge-cut for small-world networks, new
coarsening schemes necessary

9

Modularity
• [Newman, Girvan ’03] Measure based on optimizing

inter-cluster density over intra-cluster sparsity.y p y
• : partition of V such that and

; : no. of intra-cluster edges
1(,...,)kC C C= iC φ≠

i jC C φ∩ = ()im C
2

deg ()
()()

2
iv Ci

i

v
m CQ C

m m
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

∑
∑

• If a particular clustering has no more intra-cluster edges
than would be expected by random chance, we have
V l t th 0 3 i di t it t t i

0Q =

⎝ ⎠⎢ ⎥⎣ ⎦

• Values greater than 0.3 indicate community structure in
a network

• [Brandes ’07] Maximizing modularity is NP-complete

10

g y

Modularity-maximizing community identification algorithms

Algorithm Clustering
Approach

Algorithmic
Technique

Complexity

Newman,
Girvan ’03

global, divisive greedy,
centrality-based

O(n3)

Clauset et al. global, greedy O(nlog2n)
’04 agglomerative

Duch, Arenas
’05

global, divisive extremal
optimization

O(n2log2n)

Djidjev ’06 global, divisive greedy, multi-
level
partitioning

O(n2)

Newman ’06 global, divisive spectral O(n2log n)

Brandes ’07 agglomerative greedy O(n2log n)

11

Community Identification

• Known algorithms are compute-intensive:
O(n2) and in some cases O(n3)O(n2), and in some cases O(n3)

• Current approaches do not exploit the
small world network topologysmall-world network topology

• How beneficial is preprocessing?
C d i f t h i ti ?• Can we design faster heuristics?

SNAP: A parallel graph framework for small-
world networks

12

SNAP

• An open-source parallel graph framework for analyzing
small-world interaction networkssmall world interaction networks

• Parallel algorithms optimized for shared memory
manycore, SMP and multithreaded systems

Compact graph Optimized p g p
representation

p
graph kernels

Network Analysis
Techniques

13

Interaction data

SNAP Framework
• We have designed fast parallel algorithms and efficient

implementations for several graph theoretic problemsp g p p
– Graph representation
– Graph kernels: List ranking, Connected Components [ICPP05],

Spanning tree [JPDC06], MST [IPDPS04], Graph traversal p g [] [] p
[ICPP06], Shortest paths [ALENEX07, MTAAP07]

– Algorithms: Centrality analysis [ICPP06], community identification
[Madduri/Bader 07]

– Applications: Protein-interaction networks [HiCOMB06], social
network analysis [Madduri/Bader 07]

W i h i l i i SNAP i h• We integrate these implementations into SNAP, with
optimizations for small-world networks

14

Small-world network optimizations

• Graph representation
space efficient layout– space-efficient layout

– different representation for high-degree vertices
• Graph traversal: a level-synchronous approach is p y pp

suited for low diameter graphs
• Work is assigned to processors with the

b l d d di t ib ti i i dunbalanced degree distribution in mind
• We try to minimize synchronization overhead in

our parallel approachesour parallel approaches
• Attention to parallelization granularity

15

Parallel Performance: BFS and Shortest Paths

400 40
Delta-stepping (DS)
BFS

(s
ec

on
ds

) 300

ee
du

p

30

DS Speedup

xe
cu

tio
n

tim
e

(

100

200

R
el

at
iv

e
S

pe

10

20

1 2 4 8 16 32 40

E

0 0

No. of processors

1 2 4 8 16 32 40

synthetic scale-free network of
228 vertices and 230 edges

Parallel performance results on
The Cray MTA 2 (1 40 processors)

16

228 vertices and 230 edges The Cray MTA-2 (1-40 processors)

Modularity-maximizing community identification algorithms

Algorithm Clustering
Approach

Algorithmic
Technique

Complexity

N Gi ’ l b l di i i d t lit b d O()Newman, Girvan ’03 global, divisive greedy, centrality-based O(n3)

Clauset et al. ’04 global, agglomerative greedy O(nlog2n)

Duch, Arenas ’05 global, divisive extremal optimization O(n2log2n)

Djidjev ’06 global, divisive greedy, multi-level partitioning O(n2)j j g , g y, p g ()

Newman ’06 global, divisive spectral O(n2log n)

Brandes ’07 agglomerative greedy O(n2log n)

pBD global, divisive greedy, centrality-
based

O(n3)

pMA global,
agglomerative

greedy O(nlog2n)

pLA local,
l ti

Greedy, clustering
ffi i t b d

O(nlog n)

17

agglomerative coefficient-based

Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges

18

Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges

19

Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges

20

Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges

21

Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges
- How do we identify these edges?

22

Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges
- How do we identify these edges?

Newman-Girvan ’03
• Compute edge betweenness scores
to determine cut-edges
• Use the modularity metric to quantify
community structure

23

Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77 Goh ’02 Newman ’03 Brandes ’03][Freeman 77, Goh 02, Newman 03, Brandes 03]

() ()st e
BC e

σ
∑() ()

s t V st

BC e
σ≠ ∈

= ∑

• -- No. of shortest paths between vertices s and t
• -- No. of shortest paths between vertices s and t

passing through edge e
)(vstσ

stσ

passing through edge e

• Exact BC is compute-intensive: O(mn)

24

Exact BC is compute intensive: O(mn)

Centrality analysis: previous work

• Design and implementation of parallel algorithms
for evaluating Betweenness and other Centralityfor evaluating Betweenness and other Centrality
metrics, optimized for scale-free sparse graphs

• Capability to solve real-world instances more
than three orders of magnitude larger than

t SNA k !current SNA packages!

We analyze BC scores for several large scale• We analyze BC scores for several large-scale
real datasets: patent citation networks, movie-
actor, and protein-interaction networks

25

, p

Parallel Performance: Betweenness Centrality

800

1000
IBM p5 570
Cray MTA-2

m
e

(m
in

ut
es

)

600

800

E
xe

cu
tio

n
tim

200

400

2 4 8 16 20 32 40
0

200

No. of processors

IMDB movie-actor interaction
network: 392K vertices

Parallel performance results on
the Cray MTA 2 and IBM p5 570

26

network: 392K vertices
and 31.7M edges

the Cray MTA-2 and IBM p5 570

Approximate Betweenness-based Divisive Algorithm (pBD)

m Iterations:
1. Calculate betweenness scores of all the edges in the graph in

ll l

approximate

parallel
2. Find the edge with the highest score and remove it from the

network
3 Extract connected components of the graph3. Extract connected components of the graph
3. Compute modularity of resulting clustering in parallel

• Note: Betweenness scores are recalculated in everyNote: Betweenness scores are recalculated in every
iteration

• We need to only determine the edge with the highest
betweenness in each iterationbetweenness in each iteration

• Preprocessing routines: biconnected components,
strongly connected components, sparsification

27

Approximating Betweenness Centrality
[Bader Kintali Madduri Mihail ’07][Bader, Kintali, Madduri, Mihail 07]

• Novel approximation algorithm for determining
the betweenness of a specific vertex or edge in a p g
graph

• Adaptive in the number of samples (graph
traversals) the work done varies with thetraversals) – the work done varies with the
information obtained in each sample

• We prove high-probability bounds on the error
i h fi d b f lwith a fixed number of samples

• In practice, we observe that high-centrality
entities can be estimated with less than 20%entities can be estimated with less than 20%
error, by sampling just 5% of the vertices

• 20X speedup over exact betweenness centrality

28

Approximate Betweenness-based Divisive Algorithm (pBD)

• Identify highest centrality edge using the
approximate betweenness algorithmapproximate betweenness algorithm

• Run fast auxiliary kernels (biconnected
components) to determine critical edges in graphcomponents) to determine critical edges in graph

• Once the graph is broken into a sizeable number
of components compute centrality score of eachof components, compute centrality score of each
component in parallel

29

Greedy Agglomerative Clustering Algorithm (pMA)

• Start with n singleton communities
• Iteratively merge the pair of communities that• Iteratively merge the pair of communities that

result in the greatest increase in modularity
– Maintain a priority queue of possible community p y q p y

merges
• Update overall modularity score after merge

• At each iteration, the community-pair costs are
computed in parallel The community modularitycomputed in parallel. The community modularity
update step is also parallelized.

30

Greedy Local Aggregation Algorithm (pLA)

• Previous approaches to maximizing modularity
rely on global heuristics (an vertex/edge-rankingrely on global heuristics (an vertex/edge-ranking
criterion) on every iteration

• pLA: we order vertices only once, and then use a p y ,
local heuristic (clustering coefficient) for forming
communities
St t f d l h ti i th h• Start from randomly chosen vertices in the graph,
inspect their neighborhoods, and iteratively build
clustersc uste s

• Discard community if edge cut is above a
threshold

31

Modularity comparison with other
approachesapproaches

32

Experimental Study

• Experiments run on the Sun Fire T2000 (8-cores,
4 threads per core UltraSparc T1 processor)4 threads per core, UltraSparc T1 processor)

• Large-scale networks used:

33

pBD Performance (Sun Fire T2000)

1000 20
Execution time

m
in

ut
es

)

800

ed
up

15

Execution time
Relative Speedup

tio
n

tim
e

(m

400

600

el
at

iv
e

Sp
ee

10

E
xe

cu

0

200

R
e

0

5

Number of threads
1 2 4 8 12 16 24 32

0 0

RMAT SF 400K ertices

34

RMAT-SF: 400K vertices
and 1.6M edges

pMA and pLA Performance (Sun Fire T2000)

pMA pLA

on
ds

)

300

350

400

p15

20
Execution time
Relative Speedup

on
ds

)

800

1000

p15

20
Execution time
Relative Speedup

ut
io

n
tim

e
(s

ec
o

150

200

250

el
at

iv
e

Sp
ee

du

10

ut
io

n
tim

e
(s

ec
o

400

600

R
el

at
iv

e
Sp

ee
du

10

1 2 4 8 12 16 24 32

Ex
ec

u

0

50

100 R

0

5

1 2 4 8 12 16 24 32
Ex

ec
u

0

200

R

0

5

Number of threads Number of threads

RMAT SF 400K ertices

35

RMAT-SF: 400K vertices
and 1.6M edges

pBD speedup relative to GN
(Parallel speedup on Sun Fire T2000)(Parallel speedup on Sun Fire T2000)

em
en

t 1000

Algorithm Engg.
Parallelization
Combined

343 301

an
ce

 Im
pr

ov
e

100
98 74

107

Pe
rfo

rm
a

10

Small-world Network

PPI Citations DBLP NDwww Actor
1

36

pLA and pMA Parallel Speedup
on large-scale graph instances (Sun Fire T2000)on large scale graph instances (Sun Fire T2000)

12

14

16
pMA
pLA

el
 S

pe
ed

up

8

10

12

Pa
ra

lle

2

4

6

Small-world Network

PPI Citations DBLP NDwww Actor
0

2

37

S a o d e o

Observations

• pBD is 10-30x faster than GN with very
littl l i litlittle loss in quality

• Multithreaded implementations of all three
algorithms scale well on the Sun Fire
T2000

• Speedup achieved from preprocessing
kernels depends on the graph topologyp g p p gy
– NDwww, Citations: significant improvement

38

Conclusions

• We present three new parallel approaches
f it id tifi ti i ll ldfor community identification in small-world
networks

• SNAP: an open-source parallel framework p p
for large-scale network analysis
– http://www.cc.gatech.edu/~kamesh/SNAPp g
– http://www.graphanalysis.org

39

Acknowledgment of Support

David A. Bader 40

