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Overview

• Informatics networks, small-world topology
C it Id tifi ti /G h titi i• Community Identification/Graph partitioning

• The modularity measure for community 
t t d t tistructure detection

• SNAP: An open-source, parallel graph 
f k f l t l i f lframework for exploratory analysis of large-
scale networks
P ll l C it Id tifi ti• Parallel Community Identification
Algorithms for large-scale networks
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Power Distribution Networks Internet backbone Social Networks

Large scale graph problems arise from a variety of sources

3

Transportation Networks VLSI Design Computational Biology



Small-world Networks

• Graph abstractions and algorithms are extensively used 
to analyze massive social technological and biologicalto analyze massive social, technological and biological 
datasets

Social networks Computational Biology

Community identification,
Security and surveillance,

Systems biology, 
disease modeling, 

4

Secu ty a d su e a ce,
viral marketing.

g,
behavioral ecology.

Images sources: 
visualcomplexity.com



Interaction Networks

• Analysis of massive small-world interaction 
networks poses new computational challengesnetworks poses new computational challenges

Novel approaches

Spectral 
techniques

Data stream 
algorithms 

Classical graph 
algorithms

Dynamic graph
algorithms

Complex Network 
Analysis &

Empirical studies

Large-scale Information 
Network Analysis

Empirical studies

Many-core Stream 
Realistic modeling

Affordable exascale 
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y
computing

Enabling technologies

data storage



Community Structure
• Implicit communities in large-

scale networks are of interest in 
many cases
– WWW

Social networks– Social networks
– Citation networks

• Community structure detection 
i ll f l t d his usually formulated as a graph 
clustering problem

• Properties of communities mayProperties of communities may  
be different from properties of 
the entire network
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Clustering/Partitioning/Min Cut

PROBLEM Clustering MinCut Graph PartitioningPROBLEM Clustering MinCut Graph Partitioning

Objective Minimize an 
appropriate 
measure

Minimize cut 
size

Minimize cut size

measure
Balance of 
partition

Sizes may differ Sizes may 
differ

Equal sizes

Cardinality of To be computed To be Input parameterCardinality of 
partition

To be computed To be 
computed

Input parameter
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Community Identification/Graph partitioning

• Graph partitioning is a related problem, but not 
identical to community identificationidentical to community identification

• Objective function in graph partitioning: minimize 
the edge cut while trying to balance the numberthe edge cut, while trying to balance the number 
of vertices in each partition
– Metrics: coverage, conductance, performanceMetrics: coverage, conductance, performance

• Objective function in clustering: informally, 
identify/extract “dense” sub-graphsy g p
– Metrics: intra-cluster vs. inter-cluster edges
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Related Work: Partitioning Algorithms 
from Scientific Computingfrom Scientific Computing
• Theoretical and empirical evidence suggests that existing 

techniques from scientific computing perform poorly on 
ll ld t ksmall-world networks

• Low diameter and heavy-tailed degree distribution pose a 
challenge

• [Mihail, Papadimitriou ’02] Spectral properties of power-
law graphs are skewed in favor of high-degree vertices

• [Lang ’04] On using spectral techniques, “Cut quality 
i i l i h b l ” i i l h Y h !varies inversely with cut balance” in social graphs: Yahoo! 

IM graph, DBLP collaborations
• [Abou-Rjeili, Karypis ’06] Multilevel partitioning heuristics 

i l d t f ll ld t kgive large edge-cut for small-world networks, new 
coarsening schemes necessary
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Modularity
• [Newman, Girvan ’03] Measure based on optimizing 

inter-cluster density over intra-cluster sparsity.y p y
• : partition of V such that             and

;              : no. of intra-cluster edges
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• If a particular clustering has no more intra-cluster edges 
than would be expected by random chance, we have
V l t th 0 3 i di t it t t i

0Q =

⎝ ⎠⎢ ⎥⎣ ⎦

• Values greater than 0.3 indicate community structure in 
a network

• [Brandes ’07] Maximizing modularity is NP-complete
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Modularity-maximizing community identification algorithms

Algorithm Clustering 
Approach

Algorithmic 
Technique

Complexity

Newman, 
Girvan ’03

global, divisive greedy, 
centrality-based

O(n3)

Clauset et al. global, greedy O(nlog2n)
’04 agglomerative 

Duch, Arenas 
’05

global, divisive extremal 
optimization

O(n2log2n)

Djidjev ’06 global, divisive greedy, multi-
level 
partitioning

O(n2)

Newman ’06 global, divisive spectral O(n2log n)

Brandes ’07 agglomerative greedy O(n2log n)
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Community Identification

• Known algorithms are compute-intensive: 
O(n2) and in some cases O(n3)O(n2), and in some cases O(n3)

• Current approaches do not exploit the 
small world network topologysmall-world network topology

• How beneficial is preprocessing?
C d i f t h i ti ?• Can we design faster heuristics?

SNAP: A parallel graph framework for small-
world networks

12



SNAP

• An open-source parallel graph framework for analyzing 
small-world interaction networkssmall world interaction networks

• Parallel algorithms optimized for shared memory 
manycore, SMP and multithreaded systems

Compact graph Optimized p g p
representation

p
graph kernels

Network Analysis
Techniques
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Interaction data



SNAP Framework
• We have designed fast parallel algorithms and efficient 

implementations for several graph theoretic problemsp g p p
– Graph representation
– Graph kernels: List ranking, Connected Components [ICPP05], 

Spanning tree [JPDC06], MST [IPDPS04], Graph traversal p g [ ] [ ] p
[ICPP06], Shortest paths [ALENEX07, MTAAP07]

– Algorithms: Centrality analysis [ICPP06], community identification 
[Madduri/Bader 07]

– Applications: Protein-interaction networks [HiCOMB06], social 
network analysis [Madduri/Bader 07]

W i h i l i i SNAP i h• We integrate these implementations into SNAP, with 
optimizations for small-world networks
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Small-world network optimizations

• Graph representation
space efficient layout– space-efficient layout

– different representation for high-degree vertices
• Graph traversal: a level-synchronous approach is p y pp

suited for low diameter graphs
• Work is assigned to processors with the 

b l d d di t ib ti i i dunbalanced degree distribution in mind
• We try to minimize synchronization overhead in 

our parallel approachesour parallel approaches
• Attention to parallelization granularity
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Parallel Performance: BFS and Shortest Paths
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Modularity-maximizing community identification algorithms

Algorithm Clustering 
Approach

Algorithmic 
Technique

Complexity

N  Gi  ’ l b l di i i d t lit b d O( )Newman, Girvan ’03 global, divisive greedy, centrality-based O(n3)

Clauset et al. ’04 global, agglomerative greedy O(nlog2n)

Duch, Arenas ’05 global, divisive extremal optimization O(n2log2n)

Djidjev ’06 global, divisive greedy, multi-level partitioning O(n2)j j g , g y, p g ( )

Newman ’06 global, divisive spectral O(n2log n)

Brandes ’07 agglomerative greedy O(n2log n)

pBD global, divisive greedy, centrality-
based

O(n3)

pMA global, 
agglomerative 

greedy O(nlog2n)

pLA local, 
l ti

Greedy, clustering 
ffi i t b d

O(nlog n)
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Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges 
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Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges 
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Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges 
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Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges 
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Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges
- How do we identify these edges? 
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Greedy Divisive Clustering Approach: Illustration

Iteratively remove potential inter-community edges
- How do we identify these edges? 

Newman-Girvan ’03
• Compute edge betweenness scores 
to determine cut-edges
• Use the modularity metric to quantify 
community structure
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Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77 Goh ’02 Newman ’03 Brandes ’03][Freeman 77, Goh 02, Newman 03, Brandes 03]

( ) ( )st e
BC e

σ
∑( ) ( )

s t V st

BC e
σ≠ ∈

= ∑

• -- No. of shortest paths between vertices s and t
• -- No. of shortest paths between vertices s and t 

passing through edge e
)(vstσ

stσ

passing through edge e

• Exact BC is compute-intensive: O(mn)
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Exact BC is compute intensive: O(mn)



Centrality analysis: previous work

• Design and implementation of parallel algorithms
for evaluating Betweenness and other Centralityfor evaluating Betweenness and other Centrality 
metrics, optimized for scale-free sparse graphs

• Capability to solve real-world instances more 
than three orders of magnitude larger than 

t SNA k !current SNA packages!

We analyze BC scores for several large scale• We analyze BC scores for several large-scale 
real datasets: patent citation networks, movie-
actor, and protein-interaction networks

25

, p



Parallel Performance: Betweenness Centrality
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Approximate Betweenness-based Divisive Algorithm (pBD)

m Iterations:
1. Calculate betweenness scores of all the edges in the graph in 

ll l

approximate

parallel
2. Find the edge with the highest score and remove it from the 

network
3 Extract connected components of the graph3. Extract connected components of the graph
3. Compute modularity of resulting clustering in parallel

• Note: Betweenness scores are recalculated in everyNote: Betweenness scores are recalculated in every 
iteration

• We need to only determine the edge with the highest 
betweenness in each iterationbetweenness in each iteration

• Preprocessing routines: biconnected components, 
strongly connected components, sparsification
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Approximating Betweenness Centrality
[Bader Kintali Madduri Mihail ’07][Bader, Kintali, Madduri, Mihail 07]

• Novel approximation algorithm for determining 
the betweenness of a specific vertex or edge in a p g
graph

• Adaptive in the number of samples (graph 
traversals) the work done varies with thetraversals) – the work done varies with the 
information obtained in each sample

• We prove high-probability bounds on the error 
i h fi d b f lwith a fixed number of samples

• In practice, we observe that high-centrality 
entities can be estimated with less than 20%entities can be estimated with less than 20% 
error, by sampling just 5% of the vertices

• 20X speedup over exact betweenness centrality
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Approximate Betweenness-based Divisive Algorithm (pBD)

• Identify highest centrality edge using the 
approximate betweenness algorithmapproximate betweenness algorithm

• Run fast auxiliary kernels (biconnected 
components) to determine critical edges in graphcomponents) to determine critical edges in graph

• Once the graph is broken into a sizeable number 
of components compute centrality score of eachof components, compute centrality score of each 
component in parallel
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Greedy Agglomerative Clustering Algorithm (pMA)

• Start with n singleton communities
• Iteratively merge the pair of communities that• Iteratively merge the pair of communities that 

result in the greatest increase in modularity
– Maintain a priority queue of possible community p y q p y

merges
• Update overall modularity score after merge

• At each iteration, the community-pair costs are 
computed in parallel The community modularitycomputed in parallel. The community modularity 
update step is also parallelized.
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Greedy Local Aggregation Algorithm (pLA)

• Previous approaches to maximizing modularity 
rely on global heuristics (an vertex/edge-rankingrely on global heuristics (an vertex/edge-ranking 
criterion) on every iteration

• pLA: we order vertices only once, and then use a p y ,
local heuristic (clustering coefficient) for forming 
communities
St t f d l h ti i th h• Start from randomly chosen vertices in the graph, 
inspect their neighborhoods, and iteratively build 
clustersc uste s

• Discard community if edge cut is above a 
threshold

31



Modularity comparison with other 
approachesapproaches
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Experimental Study

• Experiments run on the Sun Fire T2000 (8-cores, 
4 threads per core UltraSparc T1 processor)4 threads per core, UltraSparc T1 processor)

• Large-scale networks used:
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pBD Performance (Sun Fire T2000)
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pMA and pLA Performance (Sun Fire T2000)

pMA pLA

on
ds

)

300

350

400

p15

20
Execution time
Relative Speedup

on
ds

)

800

1000

p15

20
Execution time
Relative Speedup

ut
io

n 
tim

e 
(s

ec
o

150

200

250

el
at

iv
e 

Sp
ee

du

10

ut
io

n 
tim

e 
(s

ec
o

400

600

R
el

at
iv

e 
Sp

ee
du

10

1 2 4 8 12 16 24 32

Ex
ec

u

0

50

100 R

0

5

1 2 4 8 12 16 24 32
Ex

ec
u

0

200

R

0

5

Number of threads Number of threads

RMAT SF 400K ertices

35

RMAT-SF: 400K vertices 
and 1.6M edges



pBD speedup relative to GN
(Parallel speedup on Sun Fire T2000)(Parallel speedup on Sun Fire T2000)
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pLA and pMA Parallel Speedup 
on large-scale graph instances (Sun Fire T2000)on large scale graph instances (Sun Fire T2000)
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Observations

• pBD is 10-30x faster than GN with very 
littl l i litlittle loss in quality

• Multithreaded implementations of all three 
algorithms scale well on the Sun Fire 
T2000

• Speedup achieved from preprocessing 
kernels depends on the graph topologyp g p p gy
– NDwww, Citations: significant improvement
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Conclusions

• We present three new parallel approaches 
f it id tifi ti i ll ldfor community identification in small-world 
networks

• SNAP: an open-source parallel framework p p
for large-scale network analysis
– http://www.cc.gatech.edu/~kamesh/SNAPp g
– http://www.graphanalysis.org
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