The MultiThreaded Graph Library (MTGL)

Jonathan Berry (Sandia Labs)

March 13, 2008
Outline

• Graph Software Overview
• Motivating Challenges
• MultiThreaded architectures
• The MTGL
• Integration
• Results
• Paths forward
Graph Software Overview

- LEDA (Mehlhorn, Naher)
- Stanford Graph Base (Knuth, 1993)
- LINK (DIMACS, 1996)
- Boost Graph Library (Siek, Lee, Lumsdaine, 2001)
- Parallel Boost Graph Library (Gregor, Lumsdaine, 2005)
- MultiThreaded Graph Library (2008)
Motivating Challenges

• Many graph algorithms are latency-limited
• Many real-world graph instances exhibit power laws – partitioning harder

• Many real-world graph instances are large enough to utilize HPC

How should we write graph algorithms for HPC that are scalable in both running time and memory?
HPC Options [Programming Model]

- **Distributed Memory [MPI, UPC]**
 - Parallel Boost Graph Library [ghost nodes]
 - LLNL Blue Gene/Light work [no ghost nodes]
- **SMP [OpenMP, UPC, MPI]**
 - SIMPLE, SNAP
- **SMT (e.g. Niagara) [pthreads, LWT]**
- **Massive MultiThreading (MTA/XMT) [CRAYPE]**
HPC Options [Programming Model]

- **Distributed Memory** [MPI, UPC]
 - Parallel Boost Graph Library [ghost nodes]
 - LLNL Blue Gene/Light work [no ghost nodes]

- **SMP** [OpenMP, UPC, MPI]
 - SIMPLE, SNAP
- **SMT** (e.g. Niagara) [pthreads, LWP]
- **Massive MultiThreading (MTA/XMT)** [CRAYpe]
template <class graph>
void print(graph& g)
{
 typedef typename graph_traits<graph>::vertex_descriptor vertex_descriptor_t;
 typedef typename graph_traits<graph>::adj_vertex_iterator adj_iterator_t;

 int i, j;
 int n = g.get_order();
 adj_iterator_t begin_v, end_v;
 vertex_id_map<graph> vid_map = get(vertex_id_map, g);
 #pragma mta assert parallel
 for (i=0; i<n; i++) {
 vertex_descriptor_t v = g.get_vertex(i);
 tie(begin_v, end_v) = adj_vertices(v, g);
 int deg = degree(v, g);
 int vid = get(vid_map, v);
 printf("%d: ", vid);
 #pragma mta assert parallel
 for (j=0; j<deg; j++) {
 begin_v.set_position(j);
 vertex_descriptor_t neighbor = *begin_v;
 int nid = get(vid_map, neighbor);
 printf("%d ", nid);
 }
 printf("\n");
 }
}
template <class graph>
void print(graph& g)
{
 typedef typename graph_traits<graph>::vertex_descriptor vertex_descriptor_t;
 typedef typename graph_traits<graph>::adj_vertex_iterator adj_iterator_t;

 Generic programs retrieve artifacts of the (hidden) Underlying graph representation via “graph traits”
Adapter Methods and Iterators

int n = g.get_order();
adj_iterator_t begin_v, end_v;
vertex_id_map<graph> vid_map = get(_vertex_id_map,g);
#pragma mta assert parallel
for (i=0; i<n; i++) {
 vertex_descriptor_t v = g.get_vertex(i);
 tie(begin_v, end_v) = adj_vertices(v, g);
 int deg = degree(v, g);
 int vid = get(vid_map, v);
 printf("%d: ", vid);
}
Iteration via Iterators

```c
#pragma mta assert parallel
for (j=0; j<deg; j++) {
    begin_v.set_position(j);
    vertex_descriptor_t neighbor = *begin_v;
    int nid = get(vid_map, neighbor);
    printf("%d ", nid);
}
```
Synchronization

- MTA/XMT offer word-level synchronization; MTGL exports that interface
 - mt_incr(a, i): int_fetch_add
 - mt_readfe(w): read full/empty
 - mt_write(w,v): write empty/full

- On the MTA/XMT these reduce to the underlying calls

- MTGL is being integrated with Sandia’s “Qthreads” framework, which handles the implementation on SMP/SMT.
Performance

Rough results below are for graphs with power-law or near power-law degree distributions ("rough" since code and data have been in flux)

- **MTGL connected components algorithms 200M+ edges**
 - 3GHz workstation ~5 min
 - 40 MTA-2 processors ~2-5s
 - Fastest algorithm in practice uses MTGL primitives to beat Shiloach-Vishkin
- **MTGL single-source shortest paths (Meyer & Sanders delta stepping): 200M+**
 - 3 GHz workstation, pure C code (K. Madduri): ~200+s
 - 3 GHz workstation, MTGL version: ~400+s
 - 40 MTA-2 processors: ~3s C, ~6s MTGL
 - Compiler inlining may eventually explain discrepancy
- **S-T Connectivity:**
 - 3 GHz workstation, pure C (K. Madduri), small input ~0.07s
 - 3 GHz workstation, MTGL, small input ~0.13s
 - Counting argument: 5-10 MTA-2 processors compete with 32k BG/L proc.
MultiThreading Encourages Thinking Differently

The following sparse matrix-vector multiplication examples show how basic problems might be approached differently in a multithreaded context.

The MTGL is going to encapsulate several multithreaded idioms such as the ones that follow.
Multithreading Case Study: MatVec

\[A^T \]

\[
\begin{array}{c|cc}
 & 1/2 & \\
\hline
1/3 & 1 & 1 \\
1/3 & & \\
1/3 & & \\
1/3 & 1/2 & \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 & 1 & \\
\hline
1 & 1/2 & \\
1/2 & & \\
7/3 & & \\
1/3 & & \\
5/6 & & \\
\end{array}
\]
MatVec in Distributed Memory

\[A^T \]

\[
\begin{array}{cccc}
1 & 1/2 & 1 & 1/2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{1/4}
\end{array}
\]

\[
\begin{array}{c}
11/6
\end{array}
\]

\[
\begin{array}{c}
1/3
\end{array}
\]

\[
\begin{array}{c}
1/12
\end{array}
\]

1 \rightarrow 2

1 \rightarrow 3

1 \rightarrow 4
Multithreading Case Study: MatVec

Attempt #1

\(A^T \)

Hot spot

No hot spot; Compiler handled
Multithreading Case Study: MatVec

Attempt #2

\[A^T \]

\[
\begin{bmatrix}
1/2 & 1 & 1 \\
1/2 & 1 \\
1/3 & 1 \\
1/3 & 1/2 \\
\end{bmatrix}
\]

=

\[
\begin{bmatrix}
1/4 & 1/2 & 1/3 & 1/12 \\
11/6 & 1/3 \\
\end{bmatrix}
\]
MTGL Features

• Generic programming model means that algorithms can be applied to a wide variety of contexts
 – vtkGraph
 – Memory-mapped file
 – Matrix Market sparse matrix
 – etc.
• Recent integration with Sandia’s “Qthreads” thread virtualization framework
 – Scalable generation of R-MAT graphs on Sun Niagara
 – Preliminary scalable execution of PageRank on Sun Niagara
• Techniques for avoiding hot spots and load imbalances incorporated into primitives
• Generic algorithms tend to run within a factor of two of optimal C
• Critical representation-specific code can run at optimal C speed:
 \[f(ga.get_graph()) \]
Four Modes of MTGL Graph Exploration

for v in V:
visit_adj
visit v’s neighbors
~10 memref/edge

for e in E:
visit_edges
visit e’s endpoints
~10 memref/edge

recursive parallel search
psearch
~40 memref/edge

breadth-first search
bfs
~20-40 memref/edge
Current MTGL Algorithms

- Connected components (*psearch, visit_edges, visit_adj*)
- Strongly-connected components (*psearch*)
- Maximal independent set (*visit_edges*)
- Typed subgraph isomorphism (*psearch, visit_edges*)
- S-t connectivity (*bfs*)
- Single-source shortest paths (*psearch*)
- Betweenness centrality (*bfs-like*)
- Community detection (*all kernels*)
- Connection subgraphs (*bfs, sparse matrix, mt-quicksort*)
- Find triangles (*psearch*)
- Find assortativity (*psearch*)
- Find modularity (*psearch*)
- PageRank (*matvec*)

Under development:
- Motif detection
- more
Acknowledgements

• Bruce Hendrickson

• Cray, Inc. Simon Kahan, Petr Konecny, Mike Ringenburg, Josette Huang

• Vitus Leung (Sandia): metrics
• Brad Mancke (Sandia): MTGL kernels
• William McLendon (Sandia): SSSP, S-T connectivity, connection subgraphs
• Bob Heaphy (original matrix-vector kernel)
• David Bader, Kamesh Madduri (Ga. Tech) (s-t connectivity)
• Cindy Phillips (help with algorithms)
• Andrew Lumsdaine (Indiana U.) (Parallel Boost Graph Library)
• Douglas Gregor (Indiana U.) (Parallel Boost Graph Library)
• Others!