Parallel Primitives for Computation with Large Graphs

Aydın Buluç John R.Gilbert

SIAM Conference on Parallel Processing for Scientific Computing

Challenges [Lumsdaine et al. 2007]

- Graph computations are data-driven
 - Unpredictable communication patterns
- Irregular and unstructured nature
 - Poor locality
- Fine grained data accesses
 - Latency dominated

An Architectural Approach - XMT

- Massively multithreaded machines
- No (or shallow) memory hierarchy
- Slower clock rates
- Uniform access time
- Highly scalable but not ubiquitous.

Our Approach – Sparse Matrices

- Sparse matrix primitives
 - On special semirings
 - o (x,+); (and,or); (+,min);
- Oblivious
 - Fixed communication patterns
 - Easier to overlap communication
- Coarse grained parallelism
 - Exploit memory hierarchy

BFS from multiple sources

BFS from multiple sources

 Work efficient implementation using sparse matrix-matrix multiplication (SpGEMM)

SpGEMM Applications

- Shortest path calculations (APSP)
- Betweenness centrality
- BFS from multiple source vertices
- Multigrid interpolation / restriction
- Subgraph / submatrix indexing
- Graph contraction
- Cycle detection
- Colored intersection searching
- Context-free parsing

SpGEMM Data Distribution

- ID algorithms can not scale beyond 40x
- Break-even point is around 50 processors.

2D Example: Sparse SUMMA

- $C_{ij} += A_{ik} * B_{kj}$
- At worst doubles local storage

- Based on SUMMA
 (block size = n/sqrt(p))
- Easy to generalize nonsquare matrices, etc.

Challenges of Parallel SpGEMM

- Scalable sequential kernel (A_{ik} * B_{ki})
- Load balancing
 - Especially for real world graphs
- Communication costs
 - Communication to computation ratio is much higher than dense GEMM
- Updates (additions)
 - o scalar additions ≠ scalar multiplications

Submatrices are hypersparse !

Any data structure that depends on the matrix dimension n (such as CSR or CSC) is asymptotically too wasteful for submatrices

Trends of different components

UCSB

Sequential Kernel [B&G 2008]

- Strictly O(nnz) data structure
- Complexity independent of matrix dimension
- Revival of outer-product formulation
- Heap assisted multi-way merging

Experiments with RMAT

Scalability of SpGEMM, RMAT*RMAT

Scalability of SpGEMM, RMAT*Perm

Only submatrix multiplications are timed

$$\sum_{i=0}^{\sqrt{p}}\sum_{j=0}^{\sqrt{p}}\sum_{k=0}^{\sqrt{p}}time(A_{ik}\times B_{kj})$$

Addressing the Load Balance

- Random permutations are useful.
- Bulk synchronous algorithms may still suffer:

Asynchronous algorithms have no notion of stages.

Overlapping Communication

- Asynchronous, one sided communication (Again!)
- Can drop o from LogP model

GASNET, ARMCI

(Truly one-sided) Communication layers

Myrinet, Infiniband, etc

Hardware supporting zero copy RDMA

Conclusions

- SpGEMM is a key primitive
- Much harder than dense GEMM
- No fixed recipe
 - It won't solve all your graph problems (as SpMV does not solve all your scientific problems)
- Highly scalable solution where applicable
- Widespread implementation on modern architectures (GPUs, Cell) would help.

