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Challenges [Lumsdaine et al. 2007]

Graph computations are data-driven
Unpredictable communication patterns

Irregular and unstructured nature
Poor locality

Fine grained data accesses
Latency dominated



An Architectural Approach - XMT

Massively 
multithreaded machines
No (or shallow) memory 
hierarchy
Slower clock rates
Uniform access time
Highly scalable but not 
ubiquitous.



Our Approach – Sparse Matrices

Sparse matrix primitives
On special semirings
(×,+) ; (and,or) ; (+,min) ; . . .

Oblivious 
Fixed communication patterns
Easier to overlap 
communication 

Coarse grained parallelism
Exploit memory hierarchy



BFS from multiple sources
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BFS from multiple sources

Work efficient implementation using sparse 
matrix-matrix multiplication (SpGEMM)

X

1 2

3

4 7

6

5

AT ATX



SpGEMM Applications

Shortest path calculations (APSP)
Betweenness centrality
BFS from multiple source vertices
Multigrid interpolation / restriction
Subgraph / submatrix indexing
Graph contraction
Cycle detection
Colored intersection searching
Context-free parsing



SpGEMM Data Distribution

1D algorithms can not scale beyond 40x
Break-even point is around 50 processors.
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2D Example: Sparse SUMMA

Cij += Aik * Bkj

At worst doubles local storage 

Based on SUMMA      
(block size = n/sqrt(p))

Easy to generalize 
nonsquare matrices, etc.



Challenges of Parallel SpGEMM

Scalable sequential kernel (Aik * Bkj)
Load balancing

Especially for real world graphs
Communication costs

Communication to computation ratio is 
much higher than dense GEMM

Updates (additions)
scalar additions ≠ scalar multiplications



Submatrices are hypersparse !
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Any data structure that depends on the matrix 
dimension n (such as CSR or CSC) is asymptotically 
too wasteful for submatrices



Trends of different components
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Sequential Kernel [B&G 2008]

Strictly O(nnz) data structure 
Complexity independent of matrix dimension
Revival of outer-product formulation
Heap assisted multi-way merging

⊗



Experiments with RMAT
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Scalability of SpGEMM, RMAT*RMAT
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Only submatrix multiplications are timed

Scalability of SpGEMM, RMAT*Perm
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Addressing the Load Balance

Random permutations are 
useful.
Bulk synchronous 
algorithms may still suffer:

Asynchronous
algorithms have no 
notion of stages.



Overlapping Communication

Asynchronous, one sided communication 
(Again!)
Can drop o from LogP model

Hardware supporting zero copy RDMA

Myrinet, Infiniband, etc

(Truly one-sided) Communication layers
GASNET, ARMCI



Conclusions

SpGEMM is a key primitive
Much harder than dense GEMM
No fixed recipe

It won’t solve all your graph problems (as SpMV
does not solve all your scientific problems)

Highly scalable solution where applicable
Widespread implementation on modern 
architectures (GPUs, Cell) would help.


