
March 14, 2008 SIAM Conference on Parallel Processing for
Scientific Computing

Aydın Buluç
John R.Gilbert

Parallel Primitives for
Computation with Large Graphs

Challenges [Lumsdaine et al. 2007]

Graph computations are data-driven
Unpredictable communication patterns

Irregular and unstructured nature
Poor locality

Fine grained data accesses
Latency dominated

An Architectural Approach - XMT

Massively
multithreaded machines
No (or shallow) memory
hierarchy
Slower clock rates
Uniform access time
Highly scalable but not
ubiquitous.

Our Approach – Sparse Matrices

Sparse matrix primitives
On special semirings
(×,+) ; (and,or) ; (+,min) ; . . .

Oblivious
Fixed communication patterns
Easier to overlap
communication

Coarse grained parallelism
Exploit memory hierarchy

BFS from multiple sources

X

1 2

3

4 7

6

5

AT

BFS from multiple sources

Work efficient implementation using sparse
matrix-matrix multiplication (SpGEMM)

X

1 2

3

4 7

6

5

AT ATX

SpGEMM Applications

Shortest path calculations (APSP)
Betweenness centrality
BFS from multiple source vertices
Multigrid interpolation / restriction
Subgraph / submatrix indexing
Graph contraction
Cycle detection
Colored intersection searching
Context-free parsing

SpGEMM Data Distribution

1D algorithms can not scale beyond 40x
Break-even point is around 50 processors.

* =
i

j

Aik

k
k

Bkj

Cij

2D Example: Sparse SUMMA

Cij += Aik * Bkj

At worst doubles local storage

Based on SUMMA
(block size = n/sqrt(p))

Easy to generalize
nonsquare matrices, etc.

Challenges of Parallel SpGEMM

Scalable sequential kernel (Aik * Bkj)
Load balancing

Especially for real world graphs
Communication costs

Communication to computation ratio is
much higher than dense GEMM

Updates (additions)
scalar additions ≠ scalar multiplications

Submatrices are hypersparse !

p blocks

p

nnz(i) = c

0→
p

c
nnz(i) =

Any data structure that depends on the matrix
dimension n (such as CSR or CSC) is asymptotically
too wasteful for submatrices

Trends of different components

pp
ff ≈'

p
nnznnz ≈'

p
nn ≈'

Sequential Kernel [B&G 2008]

Strictly O(nnz) data structure
Complexity independent of matrix dimension
Revival of outer-product formulation
Heap assisted multi-way merging

⊗

Experiments with RMAT

∑∑∑
= = =

×
p

i

p

j

p

k
kjik BAtime

0 0 0

)(

Scalability of SpGEMM, RMAT*RMAT

0

200

400

600

800

1000

1200

1400

1 4 16 64 256 1024

Virtual Processors

Ti
m

e

Algorithm 1 Algorithm 2 Matlab

Only submatrix multiplications are timed

Scalability of SpGEMM, RMAT*Perm

0

200

400

600

800

1000

1200

1 4 16 64 256 1024

Virtual Processors

Algorithm 1 Algorithm 2 Matlab

Addressing the Load Balance

Random permutations are
useful.
Bulk synchronous
algorithms may still suffer:

Asynchronous
algorithms have no
notion of stages.

Overlapping Communication

Asynchronous, one sided communication
(Again!)
Can drop o from LogP model

Hardware supporting zero copy RDMA

Myrinet, Infiniband, etc

(Truly one-sided) Communication layers
GASNET, ARMCI

Conclusions

SpGEMM is a key primitive
Much harder than dense GEMM
No fixed recipe

It won’t solve all your graph problems (as SpMV
does not solve all your scientific problems)

Highly scalable solution where applicable
Widespread implementation on modern
architectures (GPUs, Cell) would help.

