Parallel Primitives for
Computation with Large Graphs

Aydin Bulug
John R.Gilbert

March 14, 2008 SIAM Conference on Parallel Processing for U C S B

Scientific Computing

[Challenges [Lumsdaine et al. 2007]

Graph computations are data-driven
o Unpredictable communication patterns

Irregular and unstructured nature
o Poor locality

Fine grained data accesses
o Latency dominated

UCSB

[An Architectural Approach - XMT]

= Massively
multithreaded machines

= No (or shallow) memory
hierarchy

m Slower clock rates
» Uniform access time

= Highly scalable but not
ubiquitous.

Our Approach — Sparse Matrices

st [y

= Sparse matrix primitives
o On special semirings

o (x,+); (and,or); (+,min) ;...
= Oblivious

o Fixed communication patterns

o Easier to overlap
communication

= Coarse grained parallelism
o Exploit memory hierarchy

[BFS from multiple sources

UCSB

[BFS from multiple sources

AT

X

ATX

= Work efficient implementation using sparse

matrix-matrix multiplication (SpGEMM)

UCSB

SpGEMM Applications

Shortest path calculations (APSP)
Betweenness centrality

BFS from multiple source vertices
Multigrid interpolation / restriction
Subgraph / submatrix indexing
Graph contraction

Cycle detection

Colored intersection searching
Context-free parsing

UCSB

SpGEMM Data Distribution

Synchronous Speedup plot for 10 Synchronous Speedup plot for 2D

50 . 2000 - F §
404 1500 Jo.- T
30 . e

1000 -7 :
20

500 .- 5
104 . :
0 12p
15 |

: 5000 s, .
: 4000 5 e : 3000
oh . 3000 Sl = : 2000
2000

1000 i [
o _ 0 g Mum Procs
fatrix Dimension M Murm Procs

1D algorithms can not scale beyond 40x
Break-even point is around 50 processors.

UCSB

2D Example: Sparse SUMMA

K
L N *
K NN
— * = Based on SUMMA
t G = Ay T By (block size = n/sqrt(p))
= At worst doubles local storage - Easy to generalize

nonsquare matrices, etc.

UCSB

[Challenges of Parallel SpGEMM

Scalable sequential kernel (A ™ By;)
Load balancing
o Especially for real world graphs

Communication costs

o Communication to computation ratio is
much higher than dense GEMM

Updates (additions)

o scalar additions # scalar multiplications

UCSB

[Submatrices are hypersparse !

-
Jp
<
=C
//v nnz(i)
\
N\ J

~~
\/B blocks

= Any data structure that depends on the matrix
dimension n (such as CSR or CSC) is asymptotically
too wasteful for submatrices
UCSB

[Trends of different components

]

10 ¢ | |
i —Oe—n .
[m————— nnz | n
i flops | I
| " \/7
10 a2 p
I
L
. nnz
=10 !
B NNZ =~ —

[Sequential Kernel [B&G 2008]

= Strictly O(nnz) data structure

|

= Complexity independent of matrix dimension
= Revival of outer-product formulation

= Heap assisted multi-way merging

®

A
P\

UCSB

Time

Experiments with RMAT

Scalability of SpGEMM, RMAT*RMAT Scalability of SpGEMM, RMAT*Perm

1400 1200

1200 - 1000

1000
800

800
600

600 -
400

0 /l/

q 200
200 / -
“—:ﬂ
_ n e ———y <
0 ‘ ‘ ‘ ‘ of — ‘ ‘ ‘ ‘

1 4 16 64 256 1024 1 4 16 64 256 1024
Virtual Processors Virtual Processors
‘—o—AIgorithm 1 —a—Algorithm 2 Matlab ‘ ‘—O—Algorithm 1 —a— Algorithm 2 Matlab ‘

Only submatrix multiplications are timed

Jp Jp Jp
D > time(A, x By)
k=0

i=0 j=0

UCSB

Addressing the Load Balance

Random permutations are
useful.

Bulk synchronous
algorithms may still suffer:

Asynchronous
algorithms have no
notion of stages.

Total &7B flops by processor

Worst load imbalance by stage 1.0277 4e+007

1.8

2
4
17 70807 e +006
175} o 6
8
15.13871e-+006
17} - 10
C 12 i
- - 256936 +006
185F © o 14 -
. e wmmE.
':-' 15 x v - 1 ﬂ ““‘
o 5 10 15 R
1-5[] 5 4 é é 1;3 1'2 4 w0 = 10277423, min = 8319099, avg = 9.1669e+008, total = 2. 3467 26e+009: max/avg = 1.1 :

hultiplication stage

UCSB

[Overlapping Communication

Asynchronous, one sided communication
(Again!)

Can drop o from LogP model

GASNET, ARMCI
(Truly one-sided) Communication layers

Myrinet, Infiniband, etc

Hardware supporting zero copy RDMA

UCSB

[Conclusions

SPGEMM is a key primitive
Much harder than dense GEMM

No fixed recipe

o It won’t solve all your graph problems (as SpMV
does not solve all your scientific problems)

Highly scalable solution where applicable

Widespread implementation on modern
architectures (GPUs, Cell) would help.

UCSB

