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[Challenges [Lumsdaine et al. 2007]

Graph computations are data-driven
o Unpredictable communication patterns

Irregular and unstructured nature
o Poor locality

Fine grained data accesses
o Latency dominated
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[An Architectural Approach - XMT ]

= Massively
multithreaded machines

= No (or shallow) memory
hierarchy

m Slower clock rates
» Uniform access time

= Highly scalable but not
ubiquitous.




Our Approach — Sparse Matrices
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= Sparse matrix primitives
o On special semirings

o (x,+); (and,or); (+,min) ;...
= Oblivious

o Fixed communication patterns

o Easier to overlap
communication

= Coarse grained parallelism
o Exploit memory hierarchy




[BFS from multiple sources
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[BFS from multiple sources
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= Work efficient implementation using sparse

matrix-matrix multiplication (SpGEMM)
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SpGEMM Applications

Shortest path calculations (APSP)
Betweenness centrality

BFS from multiple source vertices
Multigrid interpolation / restriction
Subgraph / submatrix indexing
Graph contraction

Cycle detection

Colored intersection searching
Context-free parsing
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SpGEMM Data Distribution

Synchronous Speedup plot for 10 Synchronous Speedup plot for 2D
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1D algorithms can not scale beyond 40x
Break-even point is around 50 processors.
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2D Example: Sparse SUMMA

K
L N *
K NN
— * = Based on SUMMA
t G = Ay T By (block size = n/sqrt(p))
= At worst doubles local storage - Easy to generalize

nonsquare matrices, etc.
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[Challenges of Parallel SpGEMM

Scalable sequential kernel (A ™ By;)
Load balancing
o Especially for real world graphs

Communication costs

o Communication to computation ratio is
much higher than dense GEMM

Updates (additions)

o scalar additions # scalar multiplications
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[ Submatrices are hypersparse !
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= Any data structure that depends on the matrix
dimension n (such as CSR or CSC) is asymptotically
too wasteful for submatrices
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[Trends of different components
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[Sequential Kernel [B&G 2008]

= Strictly O(nnz) data structure

|

= Complexity independent of matrix dimension
= Revival of outer-product formulation

= Heap assisted multi-way merging
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Time

Experiments with RMAT

Scalability of SpGEMM, RMAT*RMAT Scalability of SpGEMM, RMAT*Perm
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Only submatrix multiplications are timed

Jp Jp Jp
D > time(A, x By)
k=0

i=0 j=0
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Addressing the Load Balance

Random permutations are
useful.

Bulk synchronous
algorithms may still suffer:

Asynchronous
algorithms have no
notion of stages.

Total &7B flops by processor

Worst load imbalance by stage 1.0277 4e+007
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[Overlapping Communication

Asynchronous, one sided communication
(Again!)

Can drop o from LogP model

GASNET, ARMCI
(Truly one-sided) Communication layers

Myrinet, Infiniband, etc

Hardware supporting zero copy RDMA
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[Conclusions

SPGEMM is a key primitive
Much harder than dense GEMM

No fixed recipe

o It won’t solve all your graph problems (as SpMV
does not solve all your scientific problems)

Highly scalable solution where applicable

Widespread implementation on modern
architectures (GPUs, Cell) would help.
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