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Linear Algebra, Graph Analysis, Informatics

• Network analysis and bibiliometrics

• PageRank [Brin & Page, 1998]
– Transition matrix of a Markov chain: 
– Ranks: 

• HITS [Kleinberg, 1998]
– Adjacency matrix of the Web graph:
– Hubs:
– Authorities: 

• Latent Semantic Analysis (LSA) [Dumais, et al., 1988]
– Vector space model of documents (term-document matrix): 
– Truncated SVD:
– Maps terms and documents to the “same” k-dimensional space 
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Authors

Multi-Link Graphs

• Nodes (one type) connected by 
multiple types of links
– Node x Node x Connection

• Two types of nodes connected by 
multiple types of links
– Node A x Node B x Connection

• Multiple types of nodes connected 
by multiple types of links
– Node A x Node B x Node C x Connection
– Directed and undirected links

Terms
Documents



Tensors

• Other names for tensors
– Multidimensional array
– N-way array

• Tensor order
– Number of dimensions

• Other names for dimension
– Mode
– Way

• Example
– The matrix A (at left) has order 2.
– The tensor X (at left) has order 3 

and its 3rd mode is of size K.
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Tensors
I

J

K

An I × J × K tensor Column (Mode-1) 
Fibers

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers

Horizontal Slices Lateral Slices Frontal Slices

mode 1 has dimension I
mode 2 has dimension J
mode 3 has dimension K

3rd order tensor

X = [xijk]



Tensor Unfolding: 
Converting a Tensor to a Matrix

(i,j,k) (i′,j′)

(i′,j′)  (i,j,k) 

Unfolding
(matricize)

Folding
(reverse 
matricize)

: The mode-n fibers are 
rearranged to be the columns 
of a matrix 

5   7
6   81   3

2   4



Tensor n-Mode Multiplication

Multiply each 
row (mode-2) 

fiber by B

Compute the dot 
product of a and 

each column 
(mode-1) fiber

Tensor Times Matrix Tensor Times Vector



Outer, Kronecker, & Khatri-Rao Products

3-Way Outer Product

=

Matrix Kronecker Product

M x N P x Q

MP x NQ

Matrix Khatri-Rao Product

M x R N x R MN x R

Observe: For two vectors a and b, a ◦ b and a ⊗ b have the same elements,           
but one is shaped into a matrix and the other into a vector.

Rank-1 Tensor
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Specially Structured Tensors

• Tucker Tensor

I x J x K

=
U

I x R

V

J x S

WK
x T

R x S x T

I x J x K

Our 
Notation
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Tucker Tensor • Tucker Tensor

Our 
Notation

Kruskal Tensor



Specially Structured Tensors

In matrix form: In matrix form:

Tucker Tensor• Tucker TensorTucker Tensor • Tucker TensorKruskal Tensor



Tucker Decomposition

• A, B, and C may be orthonormal (generally, full column rank)
• is not diagonal 
• Decomposition is not unique

I x J x K

≈

A

I x R

B

J x S
CK

x T

R x S x T

Given A, B, C, the optimal core is:

Three-mode factor analysis [Tucker, 1966]
Three-mode PCA [Kroonenberg, et al. 1980]
N-mode PCA [Kapteyn et al., 1986]
Higher-order SVD (HO-SVD) [De Lathauwer et al., 2000]



CANDECOMP/PARAFAC (CP) Decomposition

• CANDECOMP = Canonical Decomposition [Carroll & Chang, 1970]
• PARAFAC = Parallel Factors [Harshman, 1970]
• Core is diagonal (specified by the vector λ)
• Columns of A, B, and C are not orthonormal

≈

I x R

K
x R

A
B

J x R

C

R x R x R

I x J x K

+…+=



CP Alternating Least Squares (CP-ALS)

= + + …

Find all the vectors in one 
direction simultaneously

• Successively solve for each component (C,B,A)

• Optimal C is the least squares solution:

• Fix A, B, and Λ, solve for C:

Khatri-Rao Pseudoinverse

[Smilde et al., 2004]

I x J x K



CP Alternating Least Squares (CP-ALS)



Analyzing SIAM Publication Data

1999-2004 
SIAM Journal Data
5022 Documents

Tensor Toolbox (MATLAB)
[T. Kolda, B. Bader, 2007]



SIAM Data: Why Tensors?



SIAM Data: Tensor Construction

• where                                   for terms in the abstracts
– is the frequency of term i in document j
– is the number of documents that term i appears in

• for terms in the titles
• for terms in the author-suppplied keywords

• where 

• not symmetric



SIAM Data: CP Applications

• Community Identification
– Communities of papers connected by different link types

• Latent Document Similarity
– Using tensor decompositions for LSA-like analysis

• Analysis of a Body of Work via Centroids
– Body of work defined by query terms
– Body of work defined by authorship

• Author Disambiguation
– List of most prolific authors in collection changes
– Multiple author disambiguation

• Journal Prediction
– Co-reference information to define journal characteristics



SIAM Data: Document Similarity

Link Analysis: Hubs and Authorities on the World Wide Web, 
C.H.Q. Ding, H. Zha, X. He, P. Husbands, and H.D. Simon, SIREV, 2004.

• CP decomposition, R = 10:

• Similarity scores:

Interior Point Methods (Not related)
Sparse approximate inverses (Arguably distantly related)
Graph Partitioning (Related)



SIAM Data: Document Similarity

Link Analysis: Hubs and Authorities on the World Wide Web, 
C.H.Q. Ding, H. Zha, X. He, P. Husbands, and H.D. Simon, SIREV, 2004.

• CP decomposition, R = 30:

• Similarity scores:

Graphs  (Related)



SIAM Data: Author Disambiguation

• CP decomposition, R = 20:
• Computed centroids of top 20 authors’ papers (           )
• Disambiguation scores: 
• Scored all authors with same last name, first initial

T Chan (2), TM Chan (4)

T Manteufel (3)

S McCormick (3)

G Golub (1)



SIAM Data: Author Disambiguation

Disambiguation Scores for Various CP Tensor Decompositions (+ = correct; o = incorrect)

R = 15



R = 20

SIAM Data: Author Disambiguation

Disambiguation Scores for Various CP Tensor Decompositions (+ = correct; o = incorrect)



R = 25

SIAM Data: Author Disambiguation

Disambiguation Scores for Various CP Tensor Decompositions (+ = correct; o = incorrect)



SIAM Data: Journal Prediction

• CP decomposition, R = 30, vectors from B
• Bagged ensemble of decision trees (n = 100)
• 10-fold cross validation
• 43% overall accuracy



SIAM Data: Journal Prediction

Graph of confusion matrix
• Layout via Barnes-Hut
• Node color = cluster
• Node size = % correct (0-66)



Tensors and HPC

• Sparse tensors
– Data partitioning and load balancing issues
– Partially sorted coordinate format

• Optimize unfolding for single mode

• Scalable decomposition algorithms
– CP, Tucker, PARAFAC2, DEDICOM, INDSCAL, …

• Different operations, data partitioning issues

• Applications
– Network analysis, web analysis, multi-way clustering, 

data fusion, cross-language IR, feature vector generation
• Different operations, data partitioning issues

• Leverage Sandia’s Trilinos packages
– Data structures, load balancing, SVD, Eigen.



Papers Most Similar to Authors’ Centroids

John R. Gilbert (3 articles in data)

Bruce A. Hendrickson (5 articles in data)
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High-Order Analogue of the Matrix SVD

• Matrix SVD:

• Tucker Tensor (finding bases for each subspace):

• Kruskal Tensor (sum of rank-1 components):

= = +
σ1 σ2 σR

+L+



Other Tensor Applications at Sandia

• Tensor Toolbox (MATLAB) [Kolda/Bader, 2007]
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

• TOPHITS (Topical HITS) [Kolda, 2006]
– HITS plus terms in dimension 3
– Decomposition: CP

• Cross Language Information Retrieval [Chew et al., 2007]
– Different languages in dimension 3
– Decomposition: PARAFAC2

• Temporal Analysis of E-mail Traffic [Bader et al., 2007]
– Directed e-mail graph with time in dimension 3
– Decomposition: DEDICOM


