Analytic Theory of Power Law Graphs

Jeremy Kepner

MIT Lincoln Laboratory

This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Outline

- Introduction
- $\mathbf{B}^{\otimes K}$ Graphs
- $(B+I)^{\otimes K}$ Graphs
- Summary
- Kronecker Graphs
- Graphs as Matrices
- Algorithm Comparison

Power Law Modeling of Kronecker Graphs

- Real world data (internet, social networks, ...) has connections on all scales (i.e power law)
- Can be modeled with Kronecker Graphs: $\mathbf{G}^{\otimes k}=\mathbf{G}^{\otimes k-1} \otimes \mathbf{G}$
- Where " \otimes "denotes the Kronecker product of two matrices

Graphs as Matrices

- Graphs can be represented as a sparse matrices
- Multiply by adjacency matrix \rightarrow step to neighbor vertices
- Work-efficient implementation from sparse data structures
- Most algorithms reduce to products on semi-rings: C = A "+"."x" B
- "x" : associative, distributes over " + "
- \square "+": associative, commutative
- Examples: +.* min.+ or.and

Algorithm Comparison

Algorithm (Problem)	Canonical Complexity	Array-Based Complexity	Critical Path (for array)
Bellman-Ford (SSSP)	$\Theta(m n)$	$\Theta(m n)$	$\Theta(n)$
Generalized B-F (APSP)	NA	$\Theta\left(n^{3} \log n\right)$	$\Theta(\log n)$
Floyd-Warshall (APSP)	$\Theta\left(n^{3}\right)$	$\Theta\left(n^{3}\right)$	$\Theta(n)$
Prim (MST)	$\Theta(m+n \log n)$	$\Theta\left(n^{2}\right)$	$\Theta(n)$
Borůva (MST)	$\Theta(m \log n)$	$\Theta(m \log n)$	$\Theta(\log 2 n)$
Edmonds-Karp (Max Flow)	$\Theta\left(m^{2} n\right)$	$\Theta\left(m^{2} n\right)$	$\Theta(m n)$
Push-Relabel (Max Flow)	$\Theta\left(m n^{2}\right)$ $(o r$ $\left.\left(n^{3}\right)\right)$	$O\left(m n^{2}\right)$	$?$
Greedy MIS (MIS)	$\Theta(m+n \log n)$	$\Theta\left(m n+n^{2}\right)$	$\Theta(n)$
Luby (MIS)	$\Theta(m+n \log n)$	$\Theta(m \log n)$	$\Theta(\log n)$

Majority of selected algorithms can be represented with array-based constructs with equivalent complexity.
($n=|V|$ and $m=|E|$.)

Outline

- Introduction
- $\mathbf{B}^{\otimes K}$ Graphs

- Definitions
- Bipartite Graphs
- Degree Distribution
- $(B+I)^{\otimes K}$ Graphs
- Summary

Kronecker Products and Graph

Kronecker Product

- Let B be a $\mathrm{N}_{\mathrm{B}} \times \mathrm{N}_{\mathrm{B}}$ matrix
- Let C be a $\mathrm{N}_{\mathrm{C}} \times \mathrm{N}_{\mathrm{C}}$ matrix
- Then the Kronecker product of B and C will produce a $\mathrm{N}_{\mathrm{B}} \mathrm{N}_{\mathrm{C}} \times \mathrm{N}_{\mathrm{B}} \mathrm{N}_{\mathrm{C}}$ matrix A:

$$
A=B \otimes C=\left(\begin{array}{cccc}
b_{1,1} C & b_{1,2} C & \ldots & b_{1, M_{B}} C \\
b_{2,1} C & b_{2,2} C & \ldots & b_{2, M_{B}} C \\
\vdots & \vdots & & \vdots \\
b_{N_{B}, 1} C & b_{N_{B}, 2} C & \ldots & b_{N_{B}, M_{B} C} C
\end{array}\right)
$$

Kronecker Graph (Leskovec 2005 \& Chakrabati 2004)

- Let G be a NxN adjacency matrix
- Kronecker exponent to the power k is:

$$
G^{\otimes k}=G^{\otimes k-1} \otimes G
$$

Types of Kronecker Graphs

Explicit

- G only 1 and 0s

Stochastic

- G contains probabilities

Instance

- A set of M points (edges) drawn from a stochastic

Kronecker Product of a Bipartite Graph

- Fundamental result [Weischel 1962] is that the Kronecker product of two complete bipartite graphs is two complete bipartite graphs
- More generally
$B\left(n_{1}, m_{1}\right) \otimes B\left(n_{2}, m_{2}\right) \stackrel{P}{=} B\left(n_{1} n_{2}, m_{1} m_{2}\right) \cup B\left(n_{2} m_{1}, n_{1} m_{2}\right)$

Degree Distribution of Bipartite Kronecker Graphs

- Kronecker exponent of a bipartite graph produces many independent bipartite graphs

$$
B(n, m)^{\otimes k} \stackrel{P}{=} \bigcup_{r=0}^{k-1} \bigcup^{\binom{k-1}{r}} B\left(n^{k-r} m^{r}, n^{r} m^{k-r}\right)
$$

- Only k+1 different kinds of nodes in this graph, with degree distribution

$$
\operatorname{Count}\left[D e g=n^{r} m^{k-r}\right]=\binom{k}{r} n^{k-r} m^{r}
$$

Explicit Degree Distribution

- Kronecker exponent of bipartite graph naturally produces exponential distribution

Instance Degree Distribution

- An instance graph drawn from a stochastic bipartite graph is just the sum of Poisson distributions taken from the explicit bipartite graph

Outline

- Introduction
- $B^{\otimes K}$ Graphs
- $(B+I)^{\otimes K}$ Graphs
- Summary
- Bipartite + Identity Graphs
- Permutations and substructure
- Degree Distribution
- Iso Parametric Ratio

Theory

- Bipartite Kronecker graphs highlight the fundamental structures in a Kronecker graph, but
- Are not connected (i.e. many independent bipartite graphs)
- Adding identity matrix creates connections on all scales
- Resulting explicit graph has diameter $=2$
- Sub-structures in the graph are given by

$$
(B+I)^{\otimes k} \stackrel{P}{=} \sum_{r=1}^{k} "\binom{k}{r} " \bigcup^{N k-1} B^{\otimes k}
$$

- Where "" indicates permutations are required to add the matrices
- Sub-structure can be revealed by applying permutation that "groups" vertices by their bipartite sub-graph

Bipartite Permutation

- Left: unpermuted $(B+1)^{\otimes 4}$ kronecker graph
- Right: permuted $(B+1)^{\otimes 4}$ kronecker graph

Identifying Substructure

- Permuting specific terms shows their contributions to the graph

Quantifying Substructure

- Connections between bipartite subgraphs are the Kronecker product of corresponding 2×2 matrices, e.g. $B(1,1)^{\otimes 4} \otimes I(2)$

Substructure Degree Distribution

- Only k+1 different kinds of nodes in this graph, with same degree distribution, only differing values of vertex degree
- $(B+I)^{\otimes k}$ is steeper than $B^{\otimes k}$

Example Result: Iso-Parametric Ratio

- Iso-parametric ratios measure the "surface" to "volume" of a sub-graph
- Can analytically compute for a Kronecker graph: $(B+1)^{\otimes k}$
- Shows large effect of including "half" or "all" of bipartite sub-graph

Kronecker Graph Theory -Summary of Current Results-

Quantity	Graph: B(n,m) ${ }^{\otimes k}$	Graph: $(B+I){ }^{\otimes k}$
Degree Distribution	Count[Deg $\left.=n^{r} m^{k-r}\right]=\binom{k}{r} n^{k-r} m^{r}$	Count $\left[\operatorname{Deg}=(n+1)^{r}(m+1)^{k-r}\right]=\binom{k}{r} n^{k-r} m^{r}$
Betweenness Centrality	Count $\left[C_{b}=(n / m)^{2 r-k}\left(n^{k-r} m^{r}-1\right)\right]=\binom{k}{r} n^{k-r} m^{r}$	
Diameter	$\operatorname{Diam}\left(B^{\otimes k}\right)=\infty$	$\operatorname{Diam}\left((B+I)^{\otimes k}\right)=2$
Eigenvalues	$\begin{aligned} & \operatorname{eig}\left(B(n, m)^{\otimes k}\right)=\overbrace{(n m)^{k / 2}, \ldots,(n m)^{k / 2},}^{2^{k-1}} \overbrace{-(n m)^{k / 2}, \ldots,-(n m)^{k / 2}}^{2^{k-1}}\} \\ & \operatorname{eig}\left((B+I)^{\otimes k}\right)=\left\{\left((n m)^{1 / 2}+1\right)^{k},\left((n m)^{1 / 2}+1\right)^{k-1},\left((n m)^{1 / 2}-1\right)^{2}\left((n m)^{1 / 2}+1\right)^{k-2}, \ldots\right\} \end{aligned}$	
Iso-parametric Ratio "half"	$\operatorname{IsoPar}\left(n_{k}(i)\right)=\infty$	$\operatorname{IsoPar}\left(n_{k}(i)\right)=2(n+1)^{k-r}(m+1)^{r}-2$
Iso-parametric Ratio "all"	$\operatorname{IsoPar}\left(n_{k}(i) \cup m_{k}(i)\right)=0$ $\operatorname{IsoPar}\left(n_{k}(i) \cup m_{k}(i)\right)$	$\text { i) })=2 \frac{n^{r} m^{k-r}(n+1)^{k-r}(m+1)^{r}+n^{k-r} m^{r}(n+1)^{r}(m+1)^{k-r}}{2 n^{k} m^{k}+n^{r} m^{k-r}+n^{k-r} m^{r}+[\chi \text { terms }]}$

Reference

- Book: "Graph Algorithms in the Language of Linear Algebra"
- Editors: Kepner (MIT-LL) and Gilbert (UCSB)
- Contributors
- Bader (Ga Tech)
- Chakrabart (CMU)
- Dunlavy (Sandia)
- Faloutsos (CMU)
- Fineman (MIT-LL \& MIT)
- Gilbert (UCSB)
- Kahn (MIT-LL \& Brown)
- Kegelmeyer (Sandia)
- Kepner (MIT-LL)
- Kleinberg (Cornell)
- Kolda (Sandia)
- Leskovec (CMU)
- Madduri (Ga Tech)
- Robinson (MIT-LL \& NEU), Shah (UCSB)

Fundamentals of Algorithms
Graph Algorithms
in the Language of Linear Algebra

Jeremy Kepner and John Gilbert
(editors)
siam

