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Network properties

- Power-law:
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LODMLY

Network evolution
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LODMLY

Network evolution

dsior models and intuition
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Need a new network model

None of the existing models generates
graphs with these properties
We need a new model

Generate graphs recursively



ldea: Recursive graph generation

There are many obvious (but wrong) ways:
Qo

S ——>
X5

Q%

Initial graph Recursive expansion

Does not densify, has increasing diameter
is @ way of generating
self-similar matrices
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[PKDD ’'05]

Kronecker product: Graph

(3x3)

G Go = G ® Gy
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[PKDD ’'05]

Kronecker product: Definition

of matrices A and B is given by

(aLlB a1 -oB ... a.LmB\

ar 1B as-sB ... a-,,B
C=A®B= . .
NxM KxlL

\a’-nﬂlB a"TLQB R a‘n.-mB/

N*K x M*L
We define [PKDD ‘05] a Kronecker product of two
graphs as a Kronecker product of their
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[PKDD ’'05]

Kronecker graphs

We propose a growing sequence of graphs by
iterating the

y sy Y O
G,=G @G ®...Gq O
—_— QYS!
Lk times &
X3
Each Kronecker multiplication exponentially G4

increases the size of the graph
G, has N,*nodes and E * edges, so we get
densification
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[PKDD ’'05]

Kronecker product: Graph

Continuing multypling with G, we
obtain G,and so on ...

G, adjacency matrix
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[PKDD ’05]

Stochastic Kronecker graphs

Create N, xN, P,

Compute the k" Kronecker power P,

For each entry p,,, of P, include an edge (u,v) with
probability p,,

Probability
of edge p;

Kronecker [0.25(0.10/0.10(0.04]
0.5/0.2 m“'tip“catg‘ 0.05/0.150.02|0.06 Instance
0.1/0.3 0.05/0.02 1 0.15|0.06 )

3 0.01/0.03/0.03/0.09 i based
P,=P,&®P, coins

matrix K,
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[PKDD ’'05]

Kronecker graphs: Intuition (1)

Recursive growth of graph communities
Nodes get expanded to micro communities

Nodes in sub-community link among themselves and to
nodes from different communities
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Kronecker graphs: Intuition (2)

Nodes are described by attributes

u=[1,0], v=[1, 1]
Parameter matrix gives linking probability:
p(u,v) =0.1 *0.5=0.15

1

0

710.5

0.2

Kronecker
multiplication

0 (0.1

0.3

Jure Leskovec: Kronecker Graphs

11
u /0
01
00

Vv
11

10 01

00

0.25

0.10:0.10

0.04

0.05
0.05

0.15/0.02
0.02 0.15

0.06
0.06

0.01

0.03/0.03

0.09

14



Kronecker graphs: Intuition (2)

Aibuie > |

Using multiple initiators:

Attribute 3
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[PKDD ’'05]

Properties of Kronecker graphs

We [PKDDO5] that Kronecker graphs
have the following structural properties:

Properties of static networks

v Power Law Degree Distribution

v Power Law eigenvalue and eigenvector distribution
v'Small Diameter

Properties of dynamic networks

v Densification Power Law
v'Shrinking/Stabilizing Diameter
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[PKDD ’'05]

Degree distribution

Theorem: Kronecker Graphs have
in- and out-

(which can be made to behave like a Power Law)

Proof:

Let G, have degreesd,, d,, ..., d,

Kronecker multiplication with a node of degree d
gives degrees d-d,, d-d,, ..., d-d,

After Kronecker powering G, has multinomial
degree distribution
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[PKDD ’05]

Eigen-value/-vector Distribution

Theorem: The Kronecker Graph has
distribution of its

Theorem: The components of each
in Kronecker Graph follow a
distribution

Proof: Trivial by properties of Kronecker
multiplication
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[PKDD ’'05]

Temporal Patterns: Densification

Theorem: Kronecker graphs follow a
with densification

exponent
a = log(E1)/ log(Ny)

Proof:

It G, has N, nodes and £, edges then G, has N, =
N/*nodes and E, = E ¥ edges

And then E, = N,*
Which is a Densification Power Law
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[PKDD ’'05]

Constant Diameter - Proof Sketch

Theorem: . If G, has
diameter d then graph G, also has diameter d

Observation: Edges in Kronecker graphs:
Edge (X?'j X,z;[) cGRH
iff (X, Xr) € G and (X, X;) E H

where X are approprlate nodes
Example:




Why is this important?

Why models and realistic synthetic graphs:
— abnormal behavior, evolution
— predicting future from the past

of new algorithms where real graphs
are hard/impossible to collect

— many real world graphs are too
large to deal with

scenarios
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[ICML’07]

Generating realistic graphs

Want to generate realistic networks:

o SN
=

Given a Generate a
real network synthetic network

o A ;-};_;%“ )

Compare graphs properties,
e.g., degree distribution

Good news: Kronecker graphs have the

: How do we choose the parameters to match all
of these at once?

Which network properties do we care about?
, let’s
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[ICML’07]

Kronecker graphs: Estimation
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Naive estimation takes O(N!N?):
N! for different node labelings:

N? for traversing graph adjacency matrix
Do stochastic gradient descent

W (KronFi) estimate the model i OfE)
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KronFit: Likelihood

Given a graph G and Kronecker matrix @ we

calculate probability that © generated G
P(G/0)
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[ICML’07]

Challenge 1: Node correspondence

P(G’

c&f
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Ol | O | =
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0.1]0.3 0.05 | 0.

O Nodes are
02510191 0.10 | 904 Graphs G" and G” should
151 0.02 | 0.06 .
2 015 [ 006 have the same probability
0.01 | 0.03 | 0.03 | 0.09 P(G’/O):P(G”/Q)
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One needs to consider all
node correspondences O

P(G|®)=)  P(G|©,0)P(c)

All correspondences are a
priori equally likely
There are O(N!)
correspondences
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[ICML’07]

Challenge 2: calculating P(G|0,0)

Assume we solved the correspondence problem

Calculating

P(G‘@)) = 11 @)k[au’o-v] 11 (1_®k[0uio-v])
(u,v)eG (u,v)eG

Takes O(NZ) time o... node labeling

Infeasible for large graphs (N ~ 10°)
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0.05| 0.15 | 0.02 | 0.06 O(1]0 |1
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[ICML’07]

Solution 1: Node correspondence

Log-likelihood
l(@) — 10gz P(G|©,0)P(0)

Gradient of Iog-likegihood

Z1O) =) ———ma—P(0|G.6)

a

Sample the permutations from P(o|G,0) and
average the gradients
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[ICML’07]

Solution 1: Node correspondence

Start with a random permutation o
Do local moves on the permutation P(c'|G,O)
Accept the new permutation o’ P(o|G,©)

If new permutation is better (gives higher likelihood)
else accept with prob. proportional to the ratio of likelihoods (

)

1 Swap node 4
3 labels 1 and 4 3
2 —> °

4 /\1

Only need to account for
changesin 2 rows /
columns
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[ICML’07]

Solution 2: Calculating P(G|0,0)

Calculating naively P(G|0O,0) takes O(N?)

ldea:
First calculate likelihood of a graph
with O edges
Correct the likelihood for edges that we observe in
the graph
By exploiting the structure of Kronecker product
we obtain for likelihood of an

empty graph
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[ICML’07]

Solution 2: Calculating P(G|0,0)

We approximate the likelihood:

@)
@)
@)
; <]
l(@) ~ lf(@) + Z — 10g(1 — Oy, [O-’u.-? O-’U]) T log(e)k? [O-u? O"U])

N

Y 4 (*u..,_*z.:) c ~~ ~ — ~ ~ ~

Empty graph No-edge likelihood Edge likelihood

The sum goes only over the edges
Evaluating P(G|®,0) takes time
Real graphs are , E << N/



[ICML’07]

Experiments: real networks

Experimental setup
Given real graph
Stochastic gradient descent from random initial point
Obtain estimated parameters
Generate synthetic graphs
Compare properties of both graphs

We do not fit the properties themselves
We fit the likelihood and then compare the graph
properties
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[ICML’07]

Estimation: Epinions (N=76k, E=510k)

We search the space of

permutations & — [ooefoss
Fitting takes ol
Real and Kronecker are very close

10° Emm
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[ICML’07]
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Fitting scales with the number of
edges
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Kronecker generalizes G, , and RMat

Kronecker generalizes Erdos-Renyi (G, ):

Use 1x1 initiator (all cells have the same prob.)

Kronecker generalizes RMat

Use 2x2 initiator

Relation between Kronecker and RMat
like G, (n nodes, p edge prob), G, (n nodes, m edges):
Kronecker also encodes the number of edges
(in RMat that is a separate parameter)
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Quickly generating Kroneckers

In practice we generate Kronecker graphs using
the RMat like recursive deepening

Given prob. Kronecker initiator P
Expected number of edges: E = sum(P)k
Normalize P’ = 1/sum(P) * P

Perform recursive deepening using P’

: a b
P'= c|d all 5.

a+b+c+d=1
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Conclusion

Kronecker Graph model has
properties
small number of parameters
algorithms for fitting Kronecker Graphs
large space (~101,000,000) of
permutations
Kronecker graphs fit well real networks using

Kronecker graphs match graph properties without a
priori deciding on which ones to fit
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