Jure Leskovec

Carnegie Mellon University

# Kronecker Graphs

Joint work with Christos Faloutsos, Jon Kleinberg and Deepay Chakrabarti

#### The networks



# **Network properties**

- Large networks share many structural properties
  - Scale-free (power-law degree distributions)
  - 6-degrees of separation
  - Transitivity
- And we have models to think about them:
  - Preferential attachment
  - Small world
  - Copying model



#### **Network evolution**

- What is the relation between the number of nodes and the edges over time?
- Prior work assumes constant average degree over time
- Networks are denser over time
- Densification Power Law:

$$E(t) \propto N(t)^a$$

 $\alpha$  ... densification exponent  $(1 \le a \le 2)$ 



#### **Network evolution**

that the network diameter slowly grows (like log N, log log N)



- Diameter shrinks over time
  - as the <u>network grows</u> the distances between the nodes slowly <u>decrease</u>



1996 time

2000

6

5

1992

2004

#### Need a new network model

- None of the existing models generates graphs with these properties
- We need a new model
- Idea: Generate graphs recursively



# Idea: Recursive graph generation

There are many obvious (but wrong) ways:



- Does not densify, has increasing diameter
- Kronecker Product is a way of generating self-similar matrices

# Kronecker product: Graph







Intermediate stage

| 1 | 1 | 0 |
|---|---|---|
| 1 | 1 | 1 |
| 0 | 1 | 1 |

 $G_1$ 

Adjacency matrix

(3x3)

 $G_{1}$  $G_{1}$  $G_{\cdot}$ G. G,

(9x9)

 $G_2 = G_1 \otimes G_1$ 

Adjacency matrix

# Kronecker product: Definition

Kronecker product of matrices A and B is given by

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix}$$

$$N*K \times M*L$$

 We define [PKDD '05] a Kronecker product of two graphs as a Kronecker product of their adjacency matrices

# Kronecker graphs

 We propose a growing sequence of graphs by iterating the Kronecker product

$$G_k = \underbrace{G_1 \otimes G_1 \otimes \dots G_1}_{k \ times}$$



- Each Kronecker multiplication exponentially increases the size of the graph
- $G_k$  has  $N_I^k$  nodes and  $E_I^k$  edges, so we get densification

# Kronecker product: Graph

• Continuing multypling with  $G_1$  we obtain  $G_4$  and so on ...



 $G_4$  adjacency matrix

# Stochastic Kronecker graphs

- Create  $N_1 \times N_1$  probability matrix  $P_1$
- ullet Compute the  $k^{th}$  Kronecker power  $P_k$
- For each entry  $p_{uv}$  of  $P_k$  include an edge (u,v) with probability  $p_{uv}$



# Kronecker graphs: Intuition (1)

#### Intuition

- Recursive growth of graph communities
- Nodes get expanded to micro communities
- Nodes in sub-community link among themselves and to nodes from different communities





# Kronecker graphs: Intuition (2)

- Node attribute representation
  - Nodes are described by attributes

Parameter matrix gives linking probability:

$$p(u,v) = 0.1 * 0.5 = 0.15$$

1 0.5 0.2 0 0.1 0.3



|    | V    |      |      |      |
|----|------|------|------|------|
|    | 11   | 10   | 01   | 00   |
| 1  | 0.25 | 0.10 | 0.10 | 0.04 |
|    |      |      | 0.02 |      |
| 01 | 0.05 | 0.02 | 0.15 | 0.06 |
| 00 | 0.01 | 0.03 | 0.03 | 0.09 |

# Kronecker graphs: Intuition (2)

Using multiple initiators:



| 8.0 | 0.5 | 0.1 |
|-----|-----|-----|
| 0.2 | 0.9 | 0.4 |
| 0.4 | 0.2 | 0.3 |



# Properties of Kronecker graphs

- We prove [PKDD05] that Kronecker graphs have the following structural properties:
  - Properties of static networks
    - ✓ Power Law Degree Distribution
    - ✓ Power Law eigenvalue and eigenvector distribution
    - ✓ Small Diameter
  - Properties of dynamic networks
    - ✓ Densification Power Law
    - ✓ Shrinking/Stabilizing Diameter

# Degree distribution

 Theorem: Kronecker Graphs have multinomial in- and out-degree distribution (which can be made to behave like a Power Law)

#### Proof:

- Let  $G_1$  have degrees  $d_1$ ,  $d_2$ , ...,  $d_N$
- Kronecker multiplication with a node of degree d gives degrees d·d<sub>1</sub>, d·d<sub>2</sub>, ..., d·d<sub>N</sub>
- After Kronecker powering  $G_k$  has multinomial degree distribution

# Eigen-value/-vector Distribution

- Theorem: The Kronecker Graph has multinomial distribution of its eigenvalues
- Theorem: The components of each eigenvector in Kronecker Graph follow a multinomial distribution
- Proof: Trivial by properties of Kronecker multiplication

## **Temporal Patterns: Densification**

 Theorem: Kronecker graphs follow a Densification Power Law with densification exponent

$$a = \log(E_1)/\log(N_1)$$

- Proof:
  - If  $G_I$  has  $N_I$  nodes and  $E_I$  edges then  $G_k$  has  $N_k = N_I{}^k$  nodes and  $E_k = E_I{}^k$  edges
  - And then  $E_k = N_k^a$
  - Which is a Densification Power Law

#### **Constant Diameter – Proof Sketch**

- Theorem: Constant diameter: If  $G_1$  has diameter d then graph  $G_k$  also has diameter d
- Observation: Edges in Kronecker graphs:

Edge 
$$(X_{ij}, X_{kl}) \in G \otimes H$$
  
iff  $(X_i, X_k) \in G$  and  $(X_j, X_l) \in H_{X_{ij}}$ 

where X are appropriate nodes

Example:





# Why is this important?

- Why models and realistic synthetic graphs:
  - Anomaly detection abnormal behavior, evolution
  - Predictions predicting future from the past
  - Simulations of new algorithms where real graphs are hard/impossible to collect
  - Graph sampling many real world graphs are too large to deal with
  - "What if" scenarios

# Generating realistic graphs

Want to generate realistic networks:



Given a real network



Generate a synthetic network



Compare graphs properties, e.g., degree distribution

- Good news: Kronecker graphs have the expressive power
- But: How do we choose the parameters to match all of these at once?
- Q: Which network properties do we care about?
- A: Don't commit, let's match adjacency matrices

# Kronecker graphs: Estimation

Maximum likelihood estimation:



Naïve estimation takes O(N!N²):

$$\Theta = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- N! for different node labelings:
- N<sup>2</sup> for traversing graph adjacency matrix
- Do stochastic gradient descent

We (KronFit) estimate the model in O(E)

#### **KronFit: Likelihood**

Given a graph G and Kronecker matrix Θ we calculate probability that Θ generated G
 P(G|Θ)





|   | 0.25 | 0.10 | 0.10 | 0.04 |
|---|------|------|------|------|
| ) | 0.05 | 0.15 | 0.02 | 0.06 |
|   | 0.05 | 0.02 | 0.15 | 0.06 |
|   | 0.01 | 0.03 | 0.03 | 0.09 |
|   |      |      |      |      |

|   | 1 | 0 | 1 | 1 |
|---|---|---|---|---|
|   | 0 | 1 | 0 | 1 |
|   | 1 | 0 | 1 | 1 |
| > | 1 | 1 | 1 | 1 |

 $\Theta_k$ 

G

$$P(G \mid \Theta) = \prod_{(u,v) \in G} \Theta_k[u,v] \prod_{(u,v) \notin G} (1 - \Theta_k[u,v])$$

#### Challenge 1: Node correspondence



- Nodes are unlabeled
- Graphs G' and G'' should have the same probability  $P(G'|\Theta) = P(G''|\Theta)$
- One needs to consider all node correspondences  $\sigma$

$$P(G \mid \Theta) = \sum_{\sigma} P(G \mid \Theta, \sigma) P(\sigma)$$

- All correspondences are a priori equally likely
- There are O(N!)correspondences

$$P(G'|\Theta) = P(G''|\Theta)$$

# Challenge 2: calculating $P(G|\Theta,\sigma)$

- Assume we solved the correspondence problem
- Calculating

$$P(G \mid \Theta) = \prod_{(u,v) \in G} \Theta_k[\sigma_u, \sigma_v] \prod_{(u,v) \notin G} (1 - \Theta_k[\sigma_u, \sigma_v])$$

■ Takes *O(N²)* time

σ... node labeling

Infeasible for large graphs (N ~ 10<sup>5</sup>)

|   | 0.25       | 0.10 | 0.10 | 0.04                  |          | 1 | 0 | 1 | 1 |
|---|------------|------|------|-----------------------|----------|---|---|---|---|
|   | 0.05       | 0.15 | 0.02 | 0.06                  |          | 0 | 1 | 0 | 1 |
|   | 0.05       | 0.02 | 0.15 | 0.06                  | $\sigma$ | 1 | 0 | 1 | 1 |
|   | 0.01       | 0.03 | 0.03 | 0.09                  |          | 0 | 0 | 1 | 1 |
| • | ac. Kranad | Θ    | kc   | $P(G \Theta, \sigma)$ | )        |   | G |   |   |

Jure Leskovec: Kronecker Graphs

#### Solution 1: Node correspondence

Log-likelihood

$$l(\Theta) = \log \sum P(G|\Theta, \sigma)P(\sigma)$$

Gradient of log-likelihood

$$\frac{\partial}{\partial \Theta} l(\Theta) = \sum_{\sigma} \frac{\partial \log P(G|\sigma, \Theta)}{\partial \Theta} P(\sigma|G, \Theta)$$

 Sample the permutations from P(σ|G,Θ) and average the gradients

# Solution 1: Node correspondence

- Metropolis sampling
  - Start with a random permutation σ
  - Do local moves on the permutation

 $\frac{P(\sigma'|G,\Theta)}{P(\sigma|G,\Theta)}$ 

- Accept the new permutation  $\sigma'$ 
  - If new permutation is better (gives higher likelihood)
  - else accept with prob. proportional to the ratio of likelihoods (no need to calculate the normalizing constant!)



Can compute efficiently

Only need to account for changes in 2 rows / columns

# Solution 2: Calculating $P(G|\Theta,\sigma)$

- Calculating naively  $P(G|\Theta,\sigma)$  takes  $O(N^2)$
- Idea:
  - First calculate likelihood of empty graph, a graph with 0 edges
  - Correct the likelihood for edges that we observe in the graph
- By exploiting the structure of Kronecker product we obtain closed form for likelihood of an empty graph

# Solution 2: Calculating $P(G|\Theta,\sigma)$

We approximate the likelihood:



- The sum goes only over the edges
- Evaluating  $P(G|\Theta,\sigma)$  takes O(E) time
- Real graphs are sparse,  $E << N^2$

We estimate the model in O(E)

## Experiments: real networks

- Experimental setup
  - Given real graph
  - Stochastic gradient descent from random initial point
  - Obtain estimated parameters
  - Generate synthetic graphs
  - Compare properties of both graphs
- We do not fit the properties themselves
- We fit the likelihood and then compare the graph properties

## Estimation: Epinions (N=76k, E=510k)

We search the space of ~10<sup>1,000,000</sup> permutations

 $\hat{\Theta} = \frac{0.99 \ 0.54}{0.49 \ 0.13}$ 

- Fitting takes 2 hours
- Real and Kronecker are very close







# Scalability

 Fitting scales linearly with the number of edges



# Kronecker generalizes G<sub>np</sub> and RMat

- Kronecker generalizes Erdos-Renyi (G<sub>np</sub>):
  - Use 1x1 initiator (all cells have the same prob.)
- Kronecker generalizes RMat
  - Use 2x2 initiator
- Relation between Kronecker and RMat
  - like G<sub>np</sub> (n nodes, p edge prob), G<sub>nm</sub> (n nodes, m edges):
  - Kronecker also encodes the number of edges
  - (in RMat that is a separate parameter)

# Quickly generating Kroneckers

- In practice we generate Kronecker graphs using the RMat like recursive deepening
  - Given prob. Kronecker initiator P
  - Expected number of edges: E = sum(P)<sup>k</sup>
  - Normalize P' = 1/sum(P) \* P
  - Perform recursive deepening using P'

$$P' = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$



a+b+c+d=1

Jure Leskovec: Kronecker Graphs

#### Conclusion

- Kronecker Graph model has
  - provable properties
  - small number of parameters
- Scalable algorithms for fitting Kronecker Graphs
- Efficiently search large space (~10<sup>1,000,000</sup>) of permutations
- Kronecker graphs fit well real networks using few parameters
- Kronecker graphs match graph properties without a priori deciding on which ones to fit

#### References

- Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, by Jure Leskovec, Jon Kleinberg, Christos Faloutsos, ACM KDD 2005
- Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by Jure Leskovec, Deepay Chakrabarti, Jon Kleinberg and Christos Faloutsos, PKDD 2005
- Scalable Modeling of Real Graphs using Kronecker Multiplication, by Jure Leskovec and Christos Faloutsos, ICML 2007
- Graph Evolution: Densification and Shrinking Diameters, by Jure Leskovec, Jon Kleinberg and Christos Faloutsos, ACM TKDD 2007