
High-Performance Combinatorial
Techniques for Analyzing

Dynamic Interaction Networks

Kamesh Madduri David A. Bader

Acknowledgment of Support

2

HPC for Large Graphs

• Emerging applications: Intelligence, health care,
systems biology Viral marketingsystems biology, Viral marketing …

• Graph abstractions at the core
• Social network analysis: fundamentallySocial network analysis: fundamentally

different graph topologies, and computations!
– Graph traversal is one of the thirteen Berkeley dwarf

k lkernels
• Minisymposium: HPC for Large Graph Analysis
• This talk: Processing Massive Dynamic• This talk: Processing Massive Dynamic

Interaction Networks

3

Informatics: dynamic,
high-dimensional data

Static networks,
Euclidean topologies

Image Sources: visualcomplexity.com (1,2), MapQuest (3)

Information Networks

• Massive, evolving, data-rich

Online social networks Systems Biology

4
Images source:

visualcomplexity.com

SNAP

5

Dynamic Interaction Networks

• How do we adapt SNAP to dynamic interaction
networks?networks?
– New data structures
– Kernels
– Algorithms

Image Source: Seokhee Hong

6

Image Source: Seokhee Hong

Dynamic Interaction Networks

• Analysis of dynamic interaction networks poses
new computational challengesnew computational challenges

Novel approaches

Spectral
techniques

Data stream
algorithms

Classical graph
algorithms

Dynamic graph
algorithms

Complex Network
Analysis &

Empirical studies

Applications involving
Dynamic Interaction

Networks gEmpirical studies

Many-core

Networks

Stream
Realistic modeling

Affordable exascale

7

y
computing

Enabling technologies

data storage

Graph Representation
Interaction Time stepInteraction Time-intervalVertex Time step

• Augment static graph
representation with explicit time-

a b 1

b c 4

a c 5

Interaction Time-step

a b 1-10

b c 4-7

a c 5 6

Interaction Time-interval

a 1

b 4

c 5

Vertex Time step

representation with explicit time
ordering on vertices and edges
[KKK02]

a c 5

b d 7

d e 9

a c 5-6

b d 7-12

d e 9-10

c 5

d 7

e 9

• Temporal graph G(V, E, λ), with
each edge having a time label λ(e),
a non-negative integer value 7g g

• The time label is application-
dependent a

b d1

4
5

7

9a

b d1

4

7

910
7

6

12
10a

b d1

4

5

7

9

• Can define multiple time labels on
vertices and edges

c
e5

c
e

5
6

c
e

5

8

Graph Representation: adjacency data
structuresstructures
• Static representation: adjacency arrays

– Space-efficient, cache-friendlySp , y
• In dynamic networks, we need to primarily support edge

and vertex membership queries, insertions, and deletions
Should be space efficient with low synchronization overhead– Should be space-efficient, with low synchronization overhead

• We experiment with various representations
– Resizable adjacency arrays

Adj d b id ifi– Adj. arrays, sorted by vertex identifiers
– Adj. arrays for low-degree vertices, treaps for high-degree

vertices (for sparse graphs with power-law degree distributions)
M i t (4 +) b t d i– Memory requirements: ~ (4n+m)w bytes, w: memory-word size

• We can choose appropriate representation based on the
insertion/deletion ratio, and graph structural update rate.

9

Processing Structural Updates
• Insertion of an edge

– Update adjacency list of corresponding vertexUpdate adjacency list of corresponding vertex
• Deletion of an edge

– Delete from adjacency list
Ti l b l– Time label

• Insertion of a vertex
– Time labelTime label

• Deletion of a vertex
– Time label

B h d d• Batched updates
– Sort by vertex and edge identifiers

10

Multicore and SMP Servers
IBM p5 570

Sun Fire T2000 (First gen. Niagara)(g g)

16 P 5 SMP• 16-way Power5 SMP
• 1.9 GHz processor
• 256 GB physical memory
• 32KB L1D, 2MB L2, 32MB L3

Image Sources: ibm.com and sun.com

11

• 8-way superscalar
• SMT on each core

Dynamic network updates: Performance

800
dynamic array

2^
19

 u
pd

at
es

pd

at
e)

600

sorted dyn. array
sorted dyn. array + treaps

cu
tio

n
tim

e
fo

r 2
an

o
se

co
nd

s/
up

400

Av
g.

 e
xe

c (n
a

0

200

Update operation composition

100% ins 75% ins, 25% del 50% ins, 50% del
0

12

Graph: 1M vertices and 4M edges,
System: 3.2 GHz Xeon

Structural Updates: Parallel Performance

1400 14

Structural Updates: Parallel Performance

pe
r u

pd
at

e)

1000

1200

1400

10

12

14
Execution time per update
Relative Speedup

(n
an

os
ec

on
ds

600

800

la
tiv

e
S

pe
ed

up

6

8

E
xe

cu
tio

n
tim

e

200

400

R
e

2

4

Number of threads

1 2 4 8 12 16 24 32
0 0

13

Graph: 25M vertices and 200M edges,
System: Sun Fire T2000

Alternate data representations

• Compressed representations: eg. web-graph
V t d i t i t l t ti– Vertex reordering, compact interval representations,
compression of similar adjacency lists

• Processing dynamic insertions and deletionsProcessing dynamic insertions and deletions
– Dynamic tree problem for connectivity
– Self-adjusting data structures: ST (link-cut) trees, top j g () , p

trees, RC-trees …
– ST-trees are simple to implement, perform well for low-

di t h [T j & W k WEA07]diameter graphs [Tarjan & Werneck, WEA07]
– Supporting concurrent insertions and deletions?

14

Graph kernels

• Fine-grained parallelization of fundamental
building blocks using the temporal interactionbuilding blocks, using the temporal interaction
network representation

• Enables efficient implementation of high-level p g
algorithms

• Parallel approaches for the following kernels
[B d M dd i 08][Bader, Madduri 08]
– Induced subgraphs
– Connectivity spanning forestConnectivity, spanning forest
– BFS
– Single-source shortest paths

15

Induced Subgraphs
• Utilizing temporal information, dynamic graph queries can

be reformulated as problems on static networks
– eg. Queries on entities up to a particular time instant, time interval

etc.
• Induced subgraph kernel: facilitates this dynamic static

graph problem transformationgraph problem transformation
• Assumption: the system has sufficient physical memory to

hold the entire graph, ~ (m+4n)w bytes
C t ti ll i il t d i b t h d i ti• Computationally, very similar to doing batched insertions
and deletions, linear work

b d1
7 Interactions in the b d7

a

b

c

d

e

1

4
5

9

Interactions in the
time interval [2, 8]

a

b

c

d

4
5

16

Induced Subgraphs: Parallel Performance

90 12
Execution time

co
nd

s)

60

75

du
p8

10
Relative Speedup

• We reduce
execution time of
linear-work kernels

cu
tio

n
tim

e
(s

ec

30

45

R
el

at
iv

e
S

pe
ed

4

6

linear work kernels
from minutes to
seconds for
massive small-

ld t k

Ex
ec

15

30 R

2

4 world networks
(billions of vertices
and edges)

Number of threads

1 2 4 8 12 16 24 32
0 0

17

Graph: 500M vertices and 2B edges,
System: IBM p5 570 SMP

Graph Traversal (BFS)

• Level-synchronous graph traversal for low-
diameter graphs each edge in the graph visiteddiameter graphs, each edge in the graph visited
only once.

• Fast efficient implementations on shared• Fast, efficient implementations on shared
memory systems

• Dynamic networks• Dynamic networks
– Filter vertices and edges according to time-stamp

information, recompute BFS from scratch
– Dynamic graph algorithms for BFS: better amortized

work bounds, space requirements are higher

18

BFS: Parallel Performance

500 15
Execution time

• We reduce
execution time of
linear-work kernelsco

nd
s)

400

up

12

Execution time
Relative Speedup

linear work kernels
from minutes to
seconds for
massive small-

ld t kut
io

n
tim

e
(s

ec

200

300

R
el

at
iv

e
S

pe
ed

u

6

9

world networks
(billions of vertices
and edges)

E
xe

cu

100

R

3

Number of threads

1 2 4 8 12 16
0 0

19

Graph: 500M vertices and 4B edges,
System: IBM p5 570 SMP

Shortest Paths
• SSSP for dynamic networks is more challenging
• We design a parallel formulation of the Ramalingam-RepsWe design a parallel formulation of the Ramalingam Reps

algorithm for arbitrary graphs, under edge deletions
• Affected region in the graph due to edge insertions and

deletionsdeletions
• Two phases in the algorithm:

– Phase 1: compute the set of affected edges, similar to a
l i l d i l i htopological ordering algorithm

– Phase 2: update distance values, similar to a batched version of
Dijkstra’s algorithm [use prior Delta-stepping parallel
implementation]implementation]

20

Parallel Performance: BFS and Shortest Paths

400 40
Delta-stepping (DS)
BFS

(s
ec

on
ds

) 300

ee
du

p

30

DS Speedup

xe
cu

tio
n

tim
e

(

100

200

R
el

at
iv

e
S

pe

10

20

1 2 4 8 16 32 40

E

0 0

No. of processors

1 2 4 8 16 32 40

21

Graph: 256M vertices and 1B edges,
System: Cray MTA-2

Connectivity
• Parallel Connected components for static graphs: O(m+n)

work, based on the Shiloach-Vishkin algorithm, g
• Extension to dynamic networks

– Induced subgraphs, followed by the static connected components
algorithmalgorithm

• Connectivity queries can be answered by maintaining a
spanning forest of the graph
D i ti it i ll t di d bl• Dynamic connectivity is a well-studied problem
– Poly-log update and query times require linear pre-processing

time and space, and dynamic tree data structures
D i h f l l h th t f i d– Dynamic approaches are useful only when the rate of queries and
updates are high

22

Algorithms

• Formulating Network Analysis metrics in a
t l tti bltemporal setting are open problems
– Betweenness Centrality
– Community Identification

23

Betweenness Centrality (BC)
• Centrality metrics: Quantitative measures to capture the

importance of a node/vertex/actor in a graph
– Degree, Closeness, Stress, Betweenness

• Betweenness

()() ()st

s v t V st

v
BC v

σ
σ≠ ≠ ∈

= ∑
• -- No. of shortest paths between vertices s and t
• -- No. of shortest paths between vertices s and t

passing through v
)(vstσ

stσ

passing through v

• Exact BC is compute-intensive

24

Temporal Path

b d

a

c
e

25

Temporal Path

b d Two unweighted shortest paths between

a

c
e

g p
a and e

26

Temporal Path

b d Consider edges in the time interval 3-104
7

a

c
e

g
6 1

2

7

9

Two different shortest paths
between a and e!

b d b d

a

c
e

a

c
e

27

Community Identification

28

Conclusions

• We study data representations and parallel
h f l i i i t tiapproaches for solving massive interaction

network problems
• Applications: Community identification,

centrality analysis

29

