High-Performance Combinatorial
Techniques for Analyzing
Dynamic Interaction Networks

Kamesh Madduri David A. Bader

Georgia Coaollege of
Tech Computing

= Computational Science and Engineering

Acknowledgment of Support

Lahoratoiies

CRAY < Sun SONY TOSHIBA

Georgia College ol
Tech Compuiing

HPC for Large Graphs

* Emerging applications: Intelligence, health care,
systems biology, Viral marketing ...

* Graph abstractions at the core

« Social network analysis: fundamentally
different graph topologies, and computations!

— Graph traversal is one of the thirteen Berkeley dwarf
kernels

Informatics: dynamic,
high-dimensional data

. &

Euclidean topologies

Image Sources: visualcomplexity.com (1,2), MapQuest (3) 3

Information Networks

« Massive, evolving, data-rich

Online social networks

[t}
Ngmyspace.com. | £+cabook B

- . Xangacom
You Tu be fI I c k r THE WEBLDG COMMUNITY
Broadc& Linked mﬁ

Images source:
visualcomplexity.com

Systems Biology

College eff
Compuitine

Computational Science and Engineering

e
-y
L=

SNAP parallel framework

Advanced Graph
Analysis Queries

partitioning, subgraph
isomorphism...

<

Graph metrics and

Exploratory Preprocessing routines

Network
Analysis

Graph kemels
BFS, MST, connected
components ...

Graph representation

formats, data structures

Georgia College ol
Tech Camputing
— Computational Science and Engineering

5

DE mE m
b 45083 a

Dynamic Interaction Networks

 How do we adapt SNAP to dynamic interaction
networks?
— New data structures
— Kernels
— Algorithms

Image Source: Seokhee Hong

Georgia College ol
Tech Compuiing

— b
o
| 4y

- Xt

Dynamic Interaction Networks

* Analysis of dynamic interaction networks poses
new computational challenges

Novel approaches

Classical graph Data stream Spectral
algorithms algorithms techniques
Complex Network Applications involving R
Analysis & — Dynamic Interaction y S hg P
Empirical studies NGk algorithms

Realistic modeling / T \

Many-core Stream Affordable exascale

computing data storage
Georgia Colegeof

Enabling technologies Toch [SemEuting

F

'-__JJ

Graph Representation

Intergstion Time-stégpyval

. ab 1-10

* Augment static graph e laz
representation with explicit time- ac |56
ordering on vertices and edges bd | 712
[KKKO02] de [®10

« Temporal graph G(V, E, A), with
each edge having a time label A(e),
a non-negative integer value

* The time label is application-
dependent

« Can define multiple time labels on
vertices and edges

Graph Representation: adjacency

structures

Static representation: adjacency arrays

— Space-efficient, cache-friendly

In dynamic networks, we need to primarily support edge
and vertex membership queries, insertions, and deletions
— Should be space-efficient, with low synchronization overhead

We experiment with various representations
— Resizable adjacency arrays
— Ad,. arrays, sorted by vertex identifiers

— Adj. arrays for low-degree vertices, treaps for high-degree
vertices (for sparse graphs with power-law degree distributions)

— Memory requirements: ~ (4n+m)w bytes, w: memory-word size

We can choose appropriate representation based on the
insertion/deletion ratio, and graph structural update rate.

Processing Structural Updates |

* Insertion of an edge

— Update adjacency list of corresponding vertex
Deletion of an edge

— Delete from adjacency list

— Time label

Insertion of a vertex

— Time label

Deletion of a vertex

— Time label

Batched updates

— Sort by vertex and edge identifiers

Georgia College o
ech Compuling

[|

h d

10

Multicore and SMP Servers

IBM p5 570

 16-way Power5 SMP
1.9 GHz processor Image Sources: ibm.com and sun.com
« 256 GB physical memory

« 32KB L1D, 2MB L2, 32MB L3

« 8-way superscalar

o Georgia
SMT on each core T;%h

Sun Fire T2000 (First gen. Niagara)

Features:

+ Eight 64b Multithreaded
SPARC Cores

+ Shared 3MB L2 Cache

+ 16KB ICache per Core

+ 8KB DCache per Core

» Four 144b DDR-2 DRAM
Interfaces (400 MTs)

» 3.2GB/s JBUS 1/O

« Crypto: Public Key (RSA)

« Extensive RAS

Technology:

+ 90nm CMOS Process

+ 9LM Copper Interconnect

» Power: 63 Watts @ 1.2GHz

* Die Size: 378mm?2

= 279M Transistors

» Package: Flip-chip ceramic
LGA (1933 pins)

College eff
Compuiing

ymputational Science and Engineering

| _ by
puts

ﬁ . &
_ =) Yt

Dynamic network updates: Performance

800

600 -

(nano seconds/update)
N
8

200 ~

Avg. execution time for 2219 updates

H dynamic array
1 sorted dyn. array

I sorted dyn. array + treaps

0 T

100% ins

75% ins, 25% del 50% ins, 50% del

Update operation composition

Graph: 1M vertices and 4M edges,

System: 3.2 GHz Xeon

Georgia
T;gch

Callege eff

Conpuitine

12

| _ by
puts
_ =) Yt

Structural Updates: Parallel Performance

1400 14
—_ [Execution time per update
% - —A— Relative Speedup
- 1200 -+ L 12
o
=]
@
o 1000 - - 10
0 Q
§e) S
: E
o 800 - -8 o}
; 3
: - o
g 600 ~ - 6 E
0] [0)
£ 14
= 400 - 4
C
§e]
5
0
Q
X
L

1 T T 1

Graph: 25M vertices and 200M edges, a P TR
System: Sun Fire T2000 | °Fech || Comptrting

13

Alternate data representations

« Compressed representations: eg. web-graph

— Vertex reordering, compact interval representations,
compression of similar adjacency lists

* Processing dynamic insertions and deletions
— Dynamic tree problem for connectivity

— Self-adjusting data structures: ST (link-cut) trees, top
trees, RC-trees ...

— ST-trees are simple to implement, perform well for low-
diameter graphs [Tarjan & Werneck, WEAOQ7]

— Supporting concurrent insertions and deletions?

Georgia Colegeaol
ec

(O A2 AN T8 Ay S
& OMPEIRG)

14

Graph kernels

* Fine-grained parallelization of fundamental
building blocks, using the temporal interaction
network representation

« Enables efficient implementation of high-level
algorithms

« Parallel approaches for the following kernels
[Bader, Madduri 03]
— Induced subgraphs
— Connectivity, spanning forest
— BFS
— Single-source shortest paths

Georgia Caollege ol
ec Cempuiimng

15

Induced Subgraphs

« Utilizing temporal information, dynamic graph queries can
be reformulated as problems on static networks

— eg. Queries on entities up to a particular time instant, time interval
etc.

* Induced subgraph kernel: facilitates this dynamic - static
graph problem transformation

« Assumption: the system has sufficient physical memory to
hold the entire graph, ~ (m+4n)w bytes

« Computationally, very similar to doing batched insertions
and deletions, linear work

Interactions in the
time interval [2, 8]

‘

16

Execution time (seconds)

Induced Subgraphs: Parallel Perfcjrrﬁance

90 12
1 Execution time
—A— Relative Speedup
757 - 10
60 - L 8
45 L5
30 + - 4
15 - W L 2
i I
O T T T T T H H H 0
12 4 8 12 16 24 32
Number of threads
i Graph: 500M vertices and 2B edges, |
: System: IBM p5 570 SMP i

Relative Speedup

We reduce
execution time of
linear-work kernels
from minutes to
seconds for
massive small-
world networks
(billions of vertices
and edges)

Georgia Collzgz ol
Tech

Coenmpuriing]

17

Graph Traversal (BFS)

* Level-synchronous graph traversal for low-
diameter graphs, each edge in the graph visited
only once.

» Fast, efficient implementations on shared
memory systems

* Dynamic networks

— Filter vertices and edges according to time-stamp
information, recompute BFS from scratch

— Dynamic graph algorithms for BFS: better amortized
work bounds, space requirements are higher

Georgia Caollege ol
ech Compuiing

18

BFS: Parallel Performance

500 15
] [Execution time
—A— Relative Speedup

200 ., We red.uce.
o) execution time of
: g linear-work kernels
(]] L .
& o0 ° § from minutes to
£ — s seconds for
S 2001 s & massive small-

S ¥ world networks
oo . (billions of vertices
I H and edges)

a |]
O T T T T T T 0
1 2 4 8 12 16

__

i Graph: 500M vertices and 4B edges, |
i System: IBM p5 570 SMP i Gec_i_g_:gﬁ College of

Coenmpuriing]

19

Shortest Paths

« SSSP for dynamic networks is more challenging

* We design a parallel formulation of the Ramalingam-Reps
algorithm for arbitrary graphs, under edge deletions

« Affected region in the graph due to edge insertions and
deletions

 Two phases in the algorithm:

— Phase 1: compute the set of affected edges, similar to a
topological ordering algorithm

— Phase 2: update distance values, similar to a batched version of
Dijkstra’s algorithm [use prior Delta-stepping parallel
Implementation]

/ v
/“ SInk(G)

Affected vertices

Georgia Cc

20

s = AP
! E T
. & D

Parallel Performance: BFS and Shortest Paths

400 40
—&— Delta-stepping (DS)
—O— BFS

—w— DS Speedup

300 o

200 ~

N
o
Relative Speedup

100 ~

Execution time (seconds)

Graph: 256M vertices and 1B edges, i
System: Cray MTA-2 i Gegr;ggﬁ College of

Conpuitine

21

Connectivity

« Parallel Connected components for static graphs: O(m+n)
work, based on the Shiloach-Vishkin algorithm

» Extension to dynamic networks
— Induced subgraphs, followed by the static connected components
algorithm
« Connectivity queries can be answered by maintaining a
spanning forest of the graph

* Dynamic connectivity is a well-studied problem

— Poly-log update and query times require linear pre-processing
time and space, and dynamic tree data structures

— Dynamic approaches are useful only when the rate of queries and
updates are high

22

Algorithms

* Formulating Network Analysis metrics in a
temporal setting are open problems
— Betweenness Centrality
— Community ldentification

Georgia Caollege ol
ech Compuiing

23

™
|
-

Betweenness Centrality (BC)

Centrality metrics: Quantitative measures to capture the
importance of a node/vertex/actor in a graph

— Degree, Closeness, Stress, Betweenness
Betweenness

sc(v)- 3 2=W)

szVzteV Gst

o, -- No. of shortest paths between vertices sand ¢

o, (V) -- No. of shortest paths between vertices s and t
passing through v

Exact BC is compute-intensive

24

Temporal Path

Georgia Collzgez ol
ech Compuliing
Computational Science and Engineeri

25

Temporal Path

__

aand e

Georgia Collegzol
Tech Compuiing

26

Temporal Path

__

__

" Two different shortest paths |
| between a and e! |

Georgia Caollege ol
Tech Comipuiing

= BE

Community Identification

Algorithm 1: Temporal betweenness centrality-
hased divisive clustering algorithm

Input: G(V,E), length function! : E — R, time-

stamp Ae)V e € E.

Output: A partition C = (C1,...,Cy) (C; # o
and C; NC; = ¢) of V' that maximizes
modularity; A dendrogram [D repre-
senting the clustering steps.

1 Preprocessing step: Compute Biconnected
components, identify articulation points and
bridges.

2 numlter — 0
3 while numlter < m do
4 Find edge e,, with the highest approrimate
temparal betweenness centrality score in _
parallel.
5 Mark edge e, as deleted in the graph .
[Run connected components on &, update
dendrogram and number of clusters in
parallel.
T Compute modularity of the current
partitioning in parallel.
8 numlInter «— numlter + 1;
end
9 Inspect the dendrogram, set C' to the clustering Georgia Collzgez ol
with the highest modularity score. ech Cormmpuiing

Computational Science and Engineering

28

Conclusions

* We study data representations and parallel
approaches for solving massive interaction
network problems

» Applications: Community identification,
centrality analysis

Georgia College o
ec ':C, ":;"F_';'."_"" i ll.,. T ..ir"}Jl-a _‘-]_K-‘:;_

29

