

High-Performance Combinatorial Techniques for Analyzing Dynamic Interaction Networks

Kamesh Madduri

David A. Bader

Georgia College of Tech Computing Computing **Computational Science and Engineering**

Acknowledgment of Support

2

Computational Science and Engineering

HPC for Large Graphs

- Emerging applications: Intelligence, health care, systems biology, Viral marketing ...
- Graph abstractions at the core
- Social network analysis: fundamentally different graph topologies, and computations!
 - Graph traversal is one of the thirteen Berkeley dwarf kernels

College of

Computing

Computational Science and Engineering

Information Networks

Massive, evolving, data-rich ullet

SNAP

() and

Dynamic Interaction Networks

- How do we adapt SNAP to dynamic interaction networks?
 - New data structures
 - Kernels
 - Algorithms

Image Source: Seokhee Hong

College of Computing Computing

Dynamic Interaction Networks

 Analysis of dynamic interaction networks poses new computational challenges

Graph Representation

- Augment static graph representation with explicit timeordering on vertices and edges [KKK02]
- Temporal graph G(V, E, λ), with each edge having a time label λ(e), a non-negative integer value
- The time label is applicationdependent
- Can define multiple time labels on vertices and edges

Time-steprval

Georgia

Tech

Graph Representation: adjacency data structures

- Static representation: adjacency arrays
 - Space-efficient, cache-friendly
- In dynamic networks, we need to primarily support edge and vertex membership queries, insertions, and deletions
 - Should be space-efficient, with low synchronization overhead
- We experiment with various representations
 - Resizable adjacency arrays
 - Adj. arrays, sorted by vertex identifiers
 - Adj. arrays for low-degree vertices, treaps for high-degree vertices (for sparse graphs with power-law degree distributions)
 - Memory requirements: ~ (4n+m)w bytes, w: memory-word size
- We can choose appropriate representation based on the insertion/deletion ratio, and graph structural update rate.

Gollege of

Processing Structural Updates

- Insertion of an edge
 - Update adjacency list of corresponding vertex
- Deletion of an edge
 - Delete from adjacency list
 - Time label
- Insertion of a vertex
 - Time label
- Deletion of a vertex
 - Time label
- Batched updates
 - Sort by vertex and edge identifiers

Multicore and SMP Servers

IBM p5 570

- 16-way Power5 SMP
- 1.9 GHz processor
- 256 GB physical memory
- 32KB L1D, 2MB L2, 32MB L3
- 8-way superscalar
- SMT on each core

Sun Fire T2000 (First gen. Niagara)

Image Sources: ibm.com and sun.com

Features:

- Eight 64b Multithreaded
 SPARC Cores
- Shared 3MB L2 Cache
- 16KB ICache per Core
- 8KB DCache per Core
- Four 144b DDR-2 DRAM Interfaces (400 MTs)
- 3.2GB/s JBUS I/O
- Crypto: Public Key (RSA)
- Extensive RAS

Technology:

- 90nm CMOS Process
- 9LM Copper Interconnect
- Power: 63 Watts @ 1.2GHz
- Die Size: 378mm²
- 279M Transistors
- Package: Flip-chip ceramic LGA (1933 pins)

College of Computing Computing

Dynamic network updates: Performance

Graph: 1M vertices and 4M edges, System: 3.2 GHz Xeon

Structural Updates: Parallel Performance

Alternate data representations

- Compressed representations: eg. web-graph
 - Vertex reordering, compact interval representations, compression of similar adjacency lists
- Processing dynamic insertions and deletions
 - Dynamic tree problem for connectivity
 - Self-adjusting data structures: ST (link-cut) trees, top trees, RC-trees ...
 - ST-trees are simple to implement, perform well for lowdiameter graphs [Tarjan & Werneck, WEA07]
 - Supporting concurrent insertions and deletions?

Graph kernels

- Fine-grained parallelization of fundamental building blocks, using the temporal interaction network representation
- Enables efficient implementation of high-level algorithms
- Parallel approaches for the following kernels [Bader, Madduri 08]
 - Induced subgraphs
 - Connectivity, spanning forest
 - BFS
 - Single-source shortest paths

Induced Subgraphs

- Utilizing temporal information, dynamic graph queries can be reformulated as problems on static networks
 - eg. Queries on entities up to a particular time instant, time interval etc.
- Induced subgraph kernel: facilitates this dynamic → static graph problem transformation
- Assumption: the system has sufficient physical memory to hold the entire graph, ~ (m+4n)w bytes
- Computationally, very similar to doing batched insertions and deletions, linear work

Induced Subgraphs: Parallel Performance

Graph Traversal (BFS)

- Level-synchronous graph traversal for lowdiameter graphs, each edge in the graph visited only once.
- Fast, efficient implementations on shared memory systems
- Dynamic networks
 - Filter vertices and edges according to time-stamp information, recompute BFS from scratch
 - Dynamic graph algorithms for BFS: better amortized work bounds, space requirements are higher

Computational Science and Engineering

BFS: Parallel Performance

Shortest Paths

- SSSP for dynamic networks is more challenging
- We design a parallel formulation of the Ramalingam-Reps algorithm for arbitrary graphs, under edge deletions
- Affected region in the graph due to edge insertions and deletions
- Two phases in the algorithm:
 - Phase 1: compute the set of affected edges, similar to a topological ordering algorithm
 - Phase 2: update distance values, similar to a batched version of Dijkstra's algorithm [use prior Delta-stepping parallel implementation]

Parallel Performance: BFS and Shortest Paths

Connectivity

- Parallel Connected components for static graphs: O(m+n) work, based on the Shiloach-Vishkin algorithm
- Extension to dynamic networks
 - Induced subgraphs, followed by the static connected components algorithm
- Connectivity queries can be answered by maintaining a spanning forest of the graph
- Dynamic connectivity is a well-studied problem
 - Poly-log update and query times require linear pre-processing time and space, and dynamic tree data structures
 - Dynamic approaches are useful only when the rate of queries and updates are high

Algorithms

- Formulating Network Analysis metrics in a temporal setting are open problems
 - Betweenness Centrality
 - Community Identification

Betweenness Centrality (BC)

- Centrality metrics: Quantitative measures to capture the importance of a node/vertex/actor in a graph
 - Degree, Closeness, Stress, Betweenness
- Betweenness

$$BC(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

- σ_{st} -- No. of shortest paths between vertices s and t
- $\sigma_{st}(v)$ -- No. of shortest paths between vertices s and t passing through v
- Exact BC is compute-intensive

Temporal Path

Cane

College of Computing Computing

Temporal Path

Two unweighted shortest paths between a and e

Temporal Path

(Jane

Community Identification

Algorithm 1: Temporal betweenness centralitybased divisive clustering algorithm

- **Input:** G(V, E), length function $l : E \to \mathbb{R}$, timestamp $\lambda(e) \forall e \in E$.
- **Output:** A partition $C = (C_1, ..., C_k)$ $(C_i \neq \phi$ and $C_i \cap C_j = \phi$) of V that maximizes modularity; A dendrogram D representing the clustering steps.
- Preprocessing step: Compute Biconnected components, identify articulation points and bridges.
- **2** numIter $\leftarrow 0$;
- 3 while numIter < m do
- 4 Find edge e_m with the highest approximate temporal betweenness centrality score in parallel.
- 5 Mark edge e_m as deleted in the graph G.
- Run connected components on G, update dendrogram and number of clusters in parallel.
- Compute modularity of the current partitioning in parallel.
- 8 $numInter \leftarrow numIter + 1;$ end
- 9 Inspect the dendrogram, set C to the clustering with the highest modularity score.

College of Computing Computing

Conclusions

- We study data representations and parallel approaches for solving massive interaction network problems
- Applications: Community identification, centrality analysis

