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HPC for Large Graphs

• Emerging applications: Intelligence, health care, 
systems biology Viral marketingsystems biology, Viral marketing …

• Graph abstractions at the core
• Social network analysis: fundamentallySocial network analysis: fundamentally 

different graph topologies, and computations!
– Graph traversal is one of the thirteen Berkeley dwarf 

k lkernels
• Minisymposium: HPC for Large Graph Analysis
• This talk: Processing Massive Dynamic• This talk: Processing Massive Dynamic

Interaction Networks
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Informatics: dynamic, 
high-dimensional data

Static networks, 
Euclidean topologies

Image Sources: visualcomplexity.com (1,2), MapQuest (3)



Information Networks

• Massive, evolving, data-rich

Online social networks Systems Biology
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SNAP

5



Dynamic Interaction Networks

• How do we adapt SNAP to dynamic interaction 
networks?networks?
– New data structures
– Kernels
– Algorithms

Image Source: Seokhee Hong

6

Image Source: Seokhee Hong



Dynamic Interaction Networks

• Analysis of dynamic interaction networks poses 
new computational challengesnew computational challenges

Novel approaches

Spectral 
techniques

Data stream 
algorithms 

Classical graph 
algorithms

Dynamic graph
algorithms

Complex Network 
Analysis &

Empirical studies

Applications involving 
Dynamic Interaction

Networks gEmpirical studies

Many-core

Networks

Stream 
Realistic modeling

Affordable exascale 
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Graph Representation
Interaction Time stepInteraction Time-intervalVertex Time step

• Augment static graph 
representation with explicit time-
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• Temporal graph G(V, E, λ), with 
each edge having a time label λ(e), 
a non-negative integer value 7g g
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Graph Representation: adjacency data 
structuresstructures
• Static representation: adjacency arrays

– Space-efficient, cache-friendlySp , y
• In dynamic networks, we need to primarily support edge 

and vertex membership queries, insertions, and deletions
Should be space efficient with low synchronization overhead– Should be space-efficient, with low synchronization overhead

• We experiment with various representations
– Resizable adjacency arrays

Adj d b id ifi– Adj. arrays, sorted by vertex identifiers
– Adj. arrays for low-degree vertices, treaps for high-degree 

vertices (for sparse graphs with power-law degree distributions)
M i t (4 + ) b t d i– Memory requirements: ~ (4n+m)w bytes, w: memory-word size

• We can choose appropriate representation based on the 
insertion/deletion ratio, and graph structural update rate.
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Processing Structural Updates
• Insertion of an edge

– Update adjacency list of corresponding vertexUpdate adjacency list of corresponding vertex
• Deletion of an edge

– Delete from adjacency list
Ti l b l– Time label

• Insertion of a vertex
– Time labelTime label

• Deletion of a vertex
– Time label

B h d d• Batched updates
– Sort by vertex and edge identifiers
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Multicore and SMP Servers
IBM p5 570

Sun Fire T2000 (First gen. Niagara)( g g )

16 P 5 SMP• 16-way Power5 SMP
• 1.9 GHz processor
• 256 GB physical memory
• 32KB L1D, 2MB L2, 32MB L3

Image Sources: ibm.com and sun.com
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• 8-way superscalar
• SMT on each core



Dynamic network updates: Performance
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Graph:  1M vertices and 4M edges, 
System: 3.2 GHz Xeon



Structural Updates: Parallel Performance
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Structural Updates: Parallel Performance
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Graph:  25M vertices and 200M edges, 
System: Sun Fire T2000



Alternate data representations

• Compressed representations: eg. web-graph
V t d i t i t l t ti– Vertex reordering, compact interval representations, 
compression of similar adjacency lists

• Processing dynamic insertions and deletionsProcessing dynamic insertions and deletions
– Dynamic tree problem for connectivity
– Self-adjusting data structures: ST (link-cut) trees, top j g ( ) , p

trees, RC-trees …
– ST-trees are simple to implement, perform well for low-

di t h [T j & W k WEA07]diameter graphs [Tarjan & Werneck, WEA07]
– Supporting concurrent insertions and deletions?
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Graph kernels

• Fine-grained parallelization of fundamental 
building blocks using the temporal interactionbuilding blocks, using the temporal interaction 
network representation

• Enables efficient implementation of high-level p g
algorithms

• Parallel approaches for the following kernels
[B d M dd i 08][Bader, Madduri 08]
– Induced subgraphs
– Connectivity spanning forestConnectivity, spanning forest
– BFS
– Single-source shortest paths
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Induced Subgraphs
• Utilizing temporal information, dynamic graph queries can 

be reformulated as problems on static networks
– eg. Queries on entities up to a particular time instant, time interval 

etc.
• Induced subgraph kernel: facilitates this dynamic static 

graph problem transformationgraph problem transformation
• Assumption: the system has sufficient physical memory to 

hold the entire graph, ~ (m+4n)w bytes
C t ti ll i il t d i b t h d i ti• Computationally, very similar to doing batched insertions 
and deletions, linear work
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Induced Subgraphs: Parallel Performance
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Graph: 500M vertices and 2B edges, 
System: IBM p5 570 SMP



Graph Traversal (BFS)

• Level-synchronous graph traversal for low-
diameter graphs each edge in the graph visiteddiameter graphs, each edge in the graph visited 
only once.

• Fast efficient implementations on shared• Fast, efficient implementations on shared 
memory systems

• Dynamic networks• Dynamic networks
– Filter vertices and edges according to time-stamp 

information, recompute BFS from scratch
– Dynamic graph algorithms for BFS: better amortized 

work bounds, space requirements are higher
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BFS: Parallel Performance
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Graph: 500M vertices and 4B edges, 
System: IBM p5 570 SMP



Shortest Paths
• SSSP for dynamic networks is more challenging
• We design a parallel formulation of the Ramalingam-RepsWe design a parallel formulation of the Ramalingam Reps 

algorithm for arbitrary graphs, under edge deletions
• Affected region in the graph due to edge insertions and 

deletionsdeletions
• Two phases in the algorithm:

– Phase 1: compute the set of affected edges, similar to a 
l i l d i l i htopological ordering algorithm 

– Phase 2: update distance values, similar to a batched version of 
Dijkstra’s algorithm [use prior Delta-stepping parallel 
implementation]implementation]
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Parallel Performance: BFS and Shortest Paths

400 40
Delta-stepping (DS)
BFS

(s
ec

on
ds

) 300

ee
du

p

30

DS Speedup

xe
cu

tio
n 

tim
e 

(

100

200

R
el

at
iv

e 
S

pe

10

20

1 2 4 8 16 32 40

E

0 0

No. of processors

1 2 4 8 16 32 40

21

Graph: 256M vertices and 1B edges, 
System: Cray MTA-2



Connectivity
• Parallel Connected components for static graphs: O(m+n) 

work, based on the Shiloach-Vishkin algorithm, g
• Extension to dynamic networks

– Induced subgraphs, followed by the static connected components 
algorithmalgorithm

• Connectivity queries can be answered by maintaining a 
spanning forest of the graph
D i ti it i ll t di d bl• Dynamic connectivity is a well-studied problem
– Poly-log update and query times require linear pre-processing 

time and space, and dynamic tree data structures
D i h f l l h th t f i d– Dynamic approaches are useful only when the rate of queries and 
updates are high
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Algorithms

• Formulating Network Analysis metrics in a 
t l tti bltemporal setting are open problems
– Betweenness Centrality
– Community Identification
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Betweenness Centrality (BC)
• Centrality metrics: Quantitative measures to capture the 

importance of a node/vertex/actor in a graph
– Degree, Closeness, Stress, Betweenness

• Betweenness

( )( ) ( )st

s v t V st

v
BC v

σ
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• -- No. of shortest paths between vertices s and t
• -- No. of shortest paths between vertices s and t 

passing through v
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passing through v

• Exact BC is compute-intensive
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Temporal Path
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Temporal Path

b d Two unweighted shortest paths between 
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c
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a and e
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Temporal Path

b d Consider edges in the time interval 3-104
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Community Identification
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Conclusions

• We study data representations and parallel 
h f l i i i t tiapproaches for solving massive interaction 

network problems
• Applications: Community identification, 

centrality analysis
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