
 

Page 1 of 10        Version 2.1   1 November 2006 

HPCS Scalable Synthetic Compact Applications #2 
Graph Analysis 

 
Contributors: David A. Bader (Georgia Tech), John Feo (Cray), John Gilbert (UC 
Santa Barbara), Jeremy Kepner (MIT/LL), David Koester (Mitre), Eugene Loh 
(Sun Microsystems), Kamesh Madduri (Georgia Tech), Bill Mann (formerly of 
MIT/LL), Theresa Meuse (MIT/LL) 
 
Version History: 
V2.1: Released 1 November 2006 
V2.0: Released 16 August 2006 
V1.1: Released 10 January 2006 at the HPCS Productivity Meeting 
V1.0: Released 30 March 2005.  
 
Version 1.0 of this document was part of SSCA 2 Release 1.0, which was reviewed by 
members of the HPCS community. Its companion Executable Specification provided 
tested MATLAB/OCTAVE code, in both serial and MATLAB-MPI implementations. 
Version 1.1 had been reviewed by members of a broader HPC community and includes 
several clarifications and suggested parameter settings. The Version 2.0's redesign 
primarily replaces the Scalable Data Generator with an improved power-law Graph 
Generator and changes the algorithm that is used for Graph Analysis in Kernel 4 to one 
that assesses each vertex's "betweenness centrality". Version 2.1 is updated to meet the 
accompanying Executable Specification, and its new companion Executable 
Specification provides tested serial-only MATLAB/OCTAVE code. 
 
2.0 Brief Description of the Scalable Synthetic Compact Application (SSCA) 
 
The intent of this SSCA is to develop a compact application that has multiple analysis 
techniques (multiple kernels) accessing a single data structure representing a weighted, 
directed graph. In addition to a kernel to construct the graph from the input tuple list, 
there will be three additional computational kernels to operate on the graph. Each of the 
kernels will require irregular access to the graph’s data structure, and it is possible that no 
single data layout will be optimal for all four computational kernels.   
 
This SSCA includes a scalable data generator that produces edge tuples containing the 
start vertex, end vertex, and weight for each directed edge. The first kernel constructs the 
graph in a format usable by all subsequent kernels. No subsequent modifications are 
permitted to benefit specific kernels. The second kernel extracts edges by weight from the 
graph representation and forms a list of the selected edges. The third kernel extracts a 
series of subgraphs formed by following paths of specified length from a start set of 
initial vertices. The set of initial vertices are determined by kernel 2.The fourth 
computational kernel computes a centrality metric that identifies vertices of key 
importance along shortest paths of the graph. All the kernels are timed. 
 
In the descriptions of the various components of the computational kernels below, 
sequential pseudocode is provided for some components.  
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2.0.1 References 
D.A. Bader and K. Madduri, “Design and Implementation of the HPCS Graph Analysis 
Benchmark on Symmetric Multiprocessors,” The 12th International Conference on High 
Performance Computing (HiPC 2005), Springer-Verlag LNCS 3769:465-476, 2005. 
 
 
2.1 Scalable Data Generator 
 
2.1.1 Brief Description 
The scalable data generator will construct a list of edge tuples containing vertex 
identifiers and weights that represent data assigned to the edges of the multigraph. Each 
edge is directed from the first vertex of its tuple to the second. The edge weights are 
positive integers chosen from a uniform random distribution. The generated list of tuples 
must not exhibit any locality that can be exploited by the computational kernels.  Thus, 
the vertex numbers must be randomized and a random ordering of tuples must be 
presented to subsequent kernels. The data generator may be parallelized, but the vertex 
names must be globally consistent and care must be taken to minimize effects of data 
locality at the processor level. 
 
2.1.2 Detailed Text Description 
The edge tuples will have the form <StartVertex, EndVertex, Weight> where 
StartVertex is the vertex where the directed edge begins, EndVertex is the vertex 
where the edge terminates, and Weight is a positive integer.  
 
The input values required to describe the graph are as follows:    

• N: the total number of vertices. An implementation may use any set of N distinct 
integers to number the vertices, but at least 48 bits must be allocated per vertex 
number. Other parameters may be assumed to fit within the natural word of the 
machine. N is derived from the problem’s scaling parameter. 

• M: the number of directed edges. M is derived from N. 
• C: the maximum value of an integer edge weight. Weights are chosen uniformly 

at random from the distribution [1, C]. C is also derived from the problem’s 
scaling parameter. 

The graph generator is based on the Recursive MATrix (R-MAT) scale-free graph 
generation algorithm [Chakrabarti, et al., 2004]. For ease of discussion, the description of 
this R-MAT generator uses an adjacency matrix data structure; however, 
implementations may use any alternate approach that outputs the equivalent list of edge 
tuples. This model recursively sub-divides the adjacency matrix of the graph into four 
equal-sized partitions and distributes edges within these partitions with unequal 
probabilities. Initially, the adjacency matrix is empty, and edges are added one at a time. 
Each edge chooses one of the four partitions with probabilities a, b, c, and d, respectively. 
At each stage of the recursion, the parameters are varied slightly and renormalized. The 
pseudo-code for this generator is detailed in the next section. 
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It is possible that the R-MAT algorithm may create a very small number of multiple 
edges between two vertices, and even self loops. Multiple edges, self-loops, and isolated 
vertices, may be ignored in the subsequent kernels. The algorithm also generates the data 
tuples with high degrees of locality. Thus, as a final step, vertex numbers must be 
randomly permuted, and then edge tuples randomly shuffled. 
 
It is permissible to run the data generator in parallel. In this case, it is necessary to ensure 
that the vertices are named globally, and that the generated data does not possess any 
locality in the local and/or global memory system. 
 
The scalable data generator may be run in conjunction with kernels 1 through 4, or the 
data generator may be run separately with the data stored to disk.  If stored to disk, the 
data may be retrieved before starting kernel 1. The data generator operations need not be 
timed. 
 
In addition, there are a couple input parameters required by the graph kernels, which are 
outside of the scope of the Scalable Data Generator: 

• SubGraphPathLength – the maximum path length (in edges, from a specified 
source vertex) for sub-graphs generated by the subgraph extraction kernel 3. 

• K4approx - is an integer used in an approximate algorithm for kernel 4. 
 
2.1.3 Selected pseudo-code to generate the R-MAT power-law graph 
 
This is an attractive implementation in that it is embarrassingly 
parallel and does not require the explicit formation the adjacency 
matrix. 
 
% Set number of vertices. 
N    = 2^SCALE; 
 
% Set number of edges. 
M    = 8*N; 
 
% Set R-MAT probabilities. 
% Create a single parameter family. 
% Parameters can't be symmetric in order for it to be 
% a power law distribution. 
p = 0.6;  
a = p;  b = (1 - a)/3;  c = b;  d = b; 
 
% Create index arrays. 
ii = ones(M,1); 
jj = ones(M,1); 
% Loop over each order of bit. 
ab = a+ + b; 
c_norm = c/(c+ + d); 
a_norm = a/(a+ + b); 
 
for ib = 1:SCALE 
  % Compare with probabilities and set bits of indices. 
  ii_bit = rand(M,1) > ab; 
  jj_bit = rand(M,1) > ( c_norm.*ii_bit + a_norm.*not(ii_bit) ); 
  ii = ii + (2^(ib-1)).*ii_bit; 
  jj = jj + (2^(ib-1)).*jj_bit; 
end 
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% Create adjacency matrix for viewing purposes. 
AA = sparse(ii,jj,ones(M,1)); 
 
2.1.4 Suggested Parameters Settings 
 
The primary input parameters are expressed in terms of a single integer value SCALE, 
which may be used to increase the problem size (for example, SCALE = 31, 32, 33, …). 
The default parameters for R-MAT and subsequent kernels are also listed below: 
 

SSCA2 Parameter v2 setting 
SCALE an integer value 

SubGraphPathLength 3 

K4approx 
an integer value 
between 1 and 

SCALE 
 
Note that for future reference, we will assume the input graph has SCALE2n =  vertices, 

8m n= edges and a maximum integer weight SCALE2C = . K4approx is an integer used in 
an approximate algorithm for Kernel 4. When K4approx = SCALE, we say the 
implementation is exact. For other settings of K4approx, we say the implementation is 
approximate. 
 
2.1.5 References 
 
D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph mining, 
SIAM Data Mining 2004.  
 
Section 17.6, Algorithms in C (third edition). Part 5 Graph Algorithms, Robert 
Sedgewick (Programs 17.7 and 17.8) 
 
P. Sanders, Random Permutations on Distributed, External and Hierarchical Memory, 
Information Processing Letters 67 (1988) pp 305-309. 
 
2.2 Kernel 1 – Graph Construction 
 
2.2.1 Description 
The first kernel must construct a (sparse) graph from a list of tuples; each tuple contains 
start and end vertex identifiers for a directed edge, and a weight that represents data 
assigned to the edge. 
 
The graph can be represented in any manner, but it cannot be modified by or between 
subsequent kernels. Space may be reserved in the data structure for marking or locking, 
under the assumption that only one copy of a kernel will be run at a time.   
 
There are various representations for sparse directed graphs, including (but not limited to) 
sparse matrices and (multi-level) linked lists. Representations for sparse directed graphs 
may be more complicated than for sparse simple graphs.  For the purposes of this 
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application, code developers are not given the maximum size of the graph (the number of 
vertices) and are expected to determine that value during graph construction.   
 
The process of constructing the graph data structure from the set of tuples will be timed. 
 
As an aid to verification, statistics may be collected on the graph. Calculating the 
statistics may occur during the generation process or may be deferred to an untimed 
verification step. 
 
2.2.2 References 
Section 17.6 Algorithms in C third edition Part 5 Graph Algorithms, Robert Sedgewick 
(Program 17.9) 
 
2.3 Kernel 2 – Classify Large Sets 
 
2.3.1 Description 
Examine all edge weights to determine those vertex pairs with the largest integer weight. 
The output of this kernel will be an edge list, S, that will be saved for use in the following 
kernel. The process of generating the two lists/sets will be timed.   
 
2.4 Kernel 3 – Graph Extraction 
 
2.4.1 Description 
For each of the edges in the set S, produce a subgraph which consists of the vertices and 
edges of all the paths of length SubGraphPathLength starting with that edge. A possible 
computational kernel for graph extraction is Breadth-First Search. The process of graph 
extraction will be timed. 
 
2.4.2 References 
Section 18.7 Algorithms in C third edition Part 5 Graph Algorithms, Robert Sedgewick 
(Programs 18.8 and 18.9) 
 
2.5 Kernel 4 – Graph Analysis Algorithm  
 
2.5.1 Brief Description 
The intent of this kernel is to identify of the set of vertices in the graph with the highest 
betweenness centrality score.  Betweenness Centrality is a shortest paths enumeration-
based centrality metric, introduced by Freeman (1977). This is done using a betweenness 
centrality algorithm that computes this metric for every vertex in the graph.  Let stσ  
denote the number of shortest paths between vertices s  and t , and ( )st vσ  the number of 
those paths passing through v .  Betweenness Centrality of a vertex v is defined as 

( ) ( )st

s v t V st

v
BC v

σ
σ≠ ≠ ∈

= ∑  . 
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The output of this kernel is a betweenness centrality score for each vertex in the graph 
and the set of vertices with the highest betweenness centrality score. 
 
For kernel 4, we use the edge weights to filter a subset of edges E  used in this kernel’s 
input graph ( ),G V E= . We select only edges which have at least one bit set in the three 
least significant bit positions of the binary representation of the edge weight. In other 
words, edges with a weight evenly divisible by 8 are not considered in the betweenness 
centrality. Hence, 7 7 .8E m n≈ =  Note that it is permissible for an implementation 

either to filter the edges first then run an unweighted betweenness centrality algorithm or 
to modify an unweighted betweenness centrality algorithm that inspects edge weights 
during execution.  Kernel 4 is timed. 
 
Because of the high computation cost of kernel 4, an exact implementation considers all 
vertices as starting points in the betweenness centrality metric, while an approximate 
implementation uses a subset of starting vertices ( SV ). We use the input parameter 
K4approx, an integer set from 1 to SCALE, to vary the work performed by kernel 4. 
When K4approx equals SCALE, the implementation is exact.  Otherwise, 

K4approx2SV = vertices are selected randomly from V . 
 
2.5.2 Recommended algorithm 
A straight-forward way of computing betweenness centrality for each vertex would be as 
follows: 

1. Compute the length and number of shortest paths between all pairs ( ),s t . 
2. For each vertex v , calculate the summation of all possible pair-wise dependencies 

( ) ( )st
st

st

v
v

σ
δ

σ
= . 

 
Recently, Brandes (2001) proposed an algorithm that computes the exact betweenness 
centrality score for all vertices in the graph in ( )2 lognm n nΟ +  for weighted graphs, and 

( )nmΟ for unweighted graphs. The algorithm is detailed below: 
 
Define the dependency of a source vertex s V∈ on a vertex v V∈ as ( ) ( )s st

t V
v vδ δ

∈

=∑ . 

The betweenness centrality of a vertex v  can then be expressed as ( ) ( )s
s v V

BC v vδ
≠ ∈

= ∑ . 

Brandes noted that it is possible to augment Dijkstra's single-source shortest paths (SSSP) 
algorithm (for weight graphs) and breadth-first search (BFS) for unweighted graphs to 
compute the dependencies. Observe that a vertex v V∈  is on the shortest path between 
two vertices ,s t V∈ , iff ( ) ( ) ( ), , ,d s t d s v d v t= + . Define a set of predecessors of a 

vertex v  on shortest paths from s  as ( ),pred s v . Now each time an edge ,u v  is 
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scanned for which ( ) ( ) ( ), , ,d s v d s u d u v= + , that vertex is added to the predecessor set 

( ),pred s v . Then, the following relation would hold: 
( ),

sv su
u pred s v

σ σ
∈

= ∑ . 

Setting the initial condition of ( ),pred s v s=  for all neighbors v  of s , we can proceed to 
compute the number of shortest paths between s  and all other vertices. The computation 
of ( ),pred s v  can be easily integrated into Dijkstra's SSSP algorithm for weighted graphs, 

or BFS Search for unweighted graphs. Brandes also observed that the dependency ( )s vδ  
satisfies the following recursive relation: 

 ( ) ( )( )
( ): ,

1sv
s s

wv pred s w sw

v wσδ δ
σ∈

= +∑ . 

 
The algorithm proceeds as follows. First, compute n  shortest paths trees, one for each 
s V∈ . During these computations, also maintain the predecessor sets ( ),pred s v . The 
dependencies can be computed by traversing the vertices in non-increasing order of their 
distance from s  (i.e., starting at the leaves of the shortest paths tree, and working 
backwards towards s ). To finally compute the centrality value of vertex v , we merely 
have to sum all dependencies values computed during the n  different SSSP computations. 
The ( )2nΟ  space requirement can be reduced to ( )n mΟ + by maintaining a running 
centrality score. 
 
2.5.3 Selected Pseudocode 
 
We detail a parallel algorithm for computing betweenness centrality, based on Brandes’s 
algorithm (Bader, 2006). Observe that parallelism can be exploited at two levels: 

• The BFS/SSSP computations from each vertex can be done concurrently, 
provided the centrality running sums are updated atomically. 

• Fine-grained parallelism in the BFS/SSSP can be exploited. For instance, when 
the adjacencies of a vertex are visited, the edge relaxation can be done 
concurrently. 

 
Input: ( ),G V E  

Output: Array [ ]1BC nK , where [ ]BC v gives the centrality metric for vertex v  
1 for all v V∈  in parallel do 
2  [ ] 0BC v ← ; 

3 let SV V⊆  and K4approx2SV = .  /* exact vs. approximate */ 
4 for all Ss V∈  in parallel do 
5 S ←  empty stack; 
6  [ ]P w ←  empty list, ;w V∈  

7  [ ] [ ]0, ; 1;t t V sσ σ← ∈ ←  
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8  [ ] [ ]1, ; 0;d t t V d s←− ∈ ←  
9  queue ;Q s←  
10 while Q ≠ ∅  do 
11   dequeue ;v Q←  
12   push ;v S→  
13   for each neighbor w  of v  in parallel do 
14    if [ ] 0d w <  then 
15     enqueue ;w Q→  
16     [ ] [ ] 1;d w d v← +  

17   if [ ] [ ] 1d w d v= +  then 

18     [ ] [ ] [ ];w w vσ σ σ← +  

19     append [ ];v P w→  

20  [ ] 0, ;v v Vδ ← ∈  
21  while S ≠ ∅  do 
22   pop ;w S←  
23   for [ ]v P w∈  do 

24    [ ] [ ] [ ]
[ ] [ ]( )1 ;
v

v v w
w

σ
δ δ δ

σ
← + +  

25  if w s≠  then 
26    [ ] [ ] [ ];BC w BC w wδ← +  
 
 
2.5.4 Performance Metric (TEPS) 
 
In order to compare the performance of SSCA2 kernel 4 implementations across a variety 
of architectures, programming models, and productivity languages and frameworks, as 
well as normalizing across both exact and approximate implementations, we adopt a 
new performance metric described in this section. In the spirit of well-known computing 
rates floating-point operations per second (flops) measured by the Linpack benchmark 
and global updates per second (GUPs) measured by the RandomAccess benchmark, we 
define a new rate called traversed edges per second (TEPS). We measure TEPS through 
the benchmarking of kernel 4 as follows. Let ( )4timeK n be the measured execution time 
for kernel 4. For both the exact and approximate implementations of betweenness 
centrality, the number of graph edges traversed is directly proportional to 7s sV E V n≈� � , 

where sV n=  for the exact implementation and K4approx2sV = for the approximate 
implementation. We define the normalized performance rate (number of edge traversals 
per second) as  
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 ( )
( )

( )

2

4

K4approx

4

7 , for an exact implementation;time
TEPS

7 2 , for an approximate implementation.time

K

K

n
n

n
n

n

⎧
⎪⎪= ⎨

⋅⎪
⎪⎩

 

 
 
2.5.5 References 
 
D.A. Bader and K. Madduri, Parallel Algorithms for Evaluating Centrality Indices in 
Real-world Networks,  Proc. The 35th International Conference on Parallel Processing 
(ICPP), Columbus, OH, August 2006. 
 
U. Brandes, A faster algorithm for betweenness centrality. J. Mathematical Sociology, 
25(2):163–177, 2001. 
 
L.C. Freeman,  A set of measures of centrality based on betweenness. Sociometry, 
40(1):35–41, 1977. 
 
 
2.6 Validation 
 
It is not intended that the results of full-scale runs of this benchmark can be validated by 
exact comparison to a standard reference result. At full scale, the data set is enormous; 
and its exact details depend on the pseudo-random number generator used. Therefore, the 
validation of an implementation of the benchmark uses soft checking of the results. 
 
We emphasize that the intent of this benchmark is to exercise these algorithms on the 
largest data sets that will fit on machines being evaluated. However, for debugging 
purposes it may be desirable to run on small data sets, and it may be desirable to verify 
parallel results against serial results, or even against results from the executable spec.  
 
The executable spec verifies its results for kernels 1-4 by comparing them with results 
computed directly from the tuple list and, for modest problem sizes, by plotting various 
graphs which demonstrate that the results make sense. 
 
It is straightforward to verify kernels 1-3. Some possible validity checks for Kernel 4 
(Betweenness Centrality on an R-MAT instance) include: 
 

• All non-isolated vertices v V∈ will have a positive betweenness centrality 
score [ ] ( 1)BC v n n≤ − . 

• Let ( ),d i j  be the length of any shortest path from vertex i  to j . Then 

( ) [ ]
,

,
s t V v V
s t

d s t BC v
∀ ∈ ∈

≠

≥∑ ∑ .  This relation may be used in validation by accumulating 
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the shortest path lengths (one per pair of vertices) during kernel 4’s execution. 
This sum should be greater than the sum of the n betweenness centrality scores. 

• In the R-MAT instances with parameter settings, for the vertices with the highest 
betweenness centrality scores, there is a direct correlation to their outdegree. 
Hence, during the data generation phase, the vertices with the largest outdegree 
may be marked, and compared with the results from kernel 4.  

 
2.7 Evaluation Criteria 
 
In approximate order of importance, the goals of this benchmark are: 

• Fair adherence to the intent of the benchmark specification 
• Maximum problem size for a given machine 
• Minimum execution time for a given problem size 

 
Less important goals: 

• Minimum code size (not including validation code) 
• Minimal development time 
• Maximal maintainability 
• Maximal extensibility 


