

Page 1 of 10 Version 2.1 1 November 2006

HPCS Scalable Synthetic Compact Applications #2
Graph Analysis

Contributors: David A. Bader (Georgia Tech), John Feo (Cray), John Gilbert (UC
Santa Barbara), Jeremy Kepner (MIT/LL), David Koester (Mitre), Eugene Loh
(Sun Microsystems), Kamesh Madduri (Georgia Tech), Bill Mann (formerly of
MIT/LL), Theresa Meuse (MIT/LL)

Version History:
V2.1: Released 1 November 2006
V2.0: Released 16 August 2006
V1.1: Released 10 January 2006 at the HPCS Productivity Meeting
V1.0: Released 30 March 2005.

Version 1.0 of this document was part of SSCA 2 Release 1.0, which was reviewed by
members of the HPCS community. Its companion Executable Specification provided
tested MATLAB/OCTAVE code, in both serial and MATLAB-MPI implementations.
Version 1.1 had been reviewed by members of a broader HPC community and includes
several clarifications and suggested parameter settings. The Version 2.0's redesign
primarily replaces the Scalable Data Generator with an improved power-law Graph
Generator and changes the algorithm that is used for Graph Analysis in Kernel 4 to one
that assesses each vertex's "betweenness centrality". Version 2.1 is updated to meet the
accompanying Executable Specification, and its new companion Executable
Specification provides tested serial-only MATLAB/OCTAVE code.

2.0 Brief Description of the Scalable Synthetic Compact Application (SSCA)

The intent of this SSCA is to develop a compact application that has multiple analysis
techniques (multiple kernels) accessing a single data structure representing a weighted,
directed graph. In addition to a kernel to construct the graph from the input tuple list,
there will be three additional computational kernels to operate on the graph. Each of the
kernels will require irregular access to the graph’s data structure, and it is possible that no
single data layout will be optimal for all four computational kernels.

This SSCA includes a scalable data generator that produces edge tuples containing the
start vertex, end vertex, and weight for each directed edge. The first kernel constructs the
graph in a format usable by all subsequent kernels. No subsequent modifications are
permitted to benefit specific kernels. The second kernel extracts edges by weight from the
graph representation and forms a list of the selected edges. The third kernel extracts a
series of subgraphs formed by following paths of specified length from a start set of
initial vertices. The set of initial vertices are determined by kernel 2.The fourth
computational kernel computes a centrality metric that identifies vertices of key
importance along shortest paths of the graph. All the kernels are timed.

In the descriptions of the various components of the computational kernels below,
sequential pseudocode is provided for some components.

Page 2 of 10 Version 2.1 1 November 2006

2.0.1 References
D.A. Bader and K. Madduri, “Design and Implementation of the HPCS Graph Analysis
Benchmark on Symmetric Multiprocessors,” The 12th International Conference on High
Performance Computing (HiPC 2005), Springer-Verlag LNCS 3769:465-476, 2005.

2.1 Scalable Data Generator

2.1.1 Brief Description
The scalable data generator will construct a list of edge tuples containing vertex
identifiers and weights that represent data assigned to the edges of the multigraph. Each
edge is directed from the first vertex of its tuple to the second. The edge weights are
positive integers chosen from a uniform random distribution. The generated list of tuples
must not exhibit any locality that can be exploited by the computational kernels. Thus,
the vertex numbers must be randomized and a random ordering of tuples must be
presented to subsequent kernels. The data generator may be parallelized, but the vertex
names must be globally consistent and care must be taken to minimize effects of data
locality at the processor level.

2.1.2 Detailed Text Description
The edge tuples will have the form <StartVertex, EndVertex, Weight> where
StartVertex is the vertex where the directed edge begins, EndVertex is the vertex
where the edge terminates, and Weight is a positive integer.

The input values required to describe the graph are as follows:

• N: the total number of vertices. An implementation may use any set of N distinct
integers to number the vertices, but at least 48 bits must be allocated per vertex
number. Other parameters may be assumed to fit within the natural word of the
machine. N is derived from the problem’s scaling parameter.

• M: the number of directed edges. M is derived from N.
• C: the maximum value of an integer edge weight. Weights are chosen uniformly

at random from the distribution [1, C]. C is also derived from the problem’s
scaling parameter.

The graph generator is based on the Recursive MATrix (R-MAT) scale-free graph
generation algorithm [Chakrabarti, et al., 2004]. For ease of discussion, the description of
this R-MAT generator uses an adjacency matrix data structure; however,
implementations may use any alternate approach that outputs the equivalent list of edge
tuples. This model recursively sub-divides the adjacency matrix of the graph into four
equal-sized partitions and distributes edges within these partitions with unequal
probabilities. Initially, the adjacency matrix is empty, and edges are added one at a time.
Each edge chooses one of the four partitions with probabilities a, b, c, and d, respectively.
At each stage of the recursion, the parameters are varied slightly and renormalized. The
pseudo-code for this generator is detailed in the next section.

Page 3 of 10 Version 2.1 1 November 2006

It is possible that the R-MAT algorithm may create a very small number of multiple
edges between two vertices, and even self loops. Multiple edges, self-loops, and isolated
vertices, may be ignored in the subsequent kernels. The algorithm also generates the data
tuples with high degrees of locality. Thus, as a final step, vertex numbers must be
randomly permuted, and then edge tuples randomly shuffled.

It is permissible to run the data generator in parallel. In this case, it is necessary to ensure
that the vertices are named globally, and that the generated data does not possess any
locality in the local and/or global memory system.

The scalable data generator may be run in conjunction with kernels 1 through 4, or the
data generator may be run separately with the data stored to disk. If stored to disk, the
data may be retrieved before starting kernel 1. The data generator operations need not be
timed.

In addition, there are a couple input parameters required by the graph kernels, which are
outside of the scope of the Scalable Data Generator:

• SubGraphPathLength – the maximum path length (in edges, from a specified
source vertex) for sub-graphs generated by the subgraph extraction kernel 3.

• K4approx - is an integer used in an approximate algorithm for kernel 4.

2.1.3 Selected pseudo-code to generate the R-MAT power-law graph

This is an attractive implementation in that it is embarrassingly
parallel and does not require the explicit formation the adjacency
matrix.

% Set number of vertices.
N = 2^SCALE;

% Set number of edges.
M = 8*N;

% Set R-MAT probabilities.
% Create a single parameter family.
% Parameters can't be symmetric in order for it to be
% a power law distribution.
p = 0.6;
a = p; b = (1 - a)/3; c = b; d = b;

% Create index arrays.
ii = ones(M,1);
jj = ones(M,1);
% Loop over each order of bit.
ab = a+ + b;
c_norm = c/(c+ + d);
a_norm = a/(a+ + b);

for ib = 1:SCALE
 % Compare with probabilities and set bits of indices.
 ii_bit = rand(M,1) > ab;
 jj_bit = rand(M,1) > (c_norm.*ii_bit + a_norm.*not(ii_bit));
 ii = ii + (2^(ib-1)).*ii_bit;
 jj = jj + (2^(ib-1)).*jj_bit;
end

Page 4 of 10 Version 2.1 1 November 2006

% Create adjacency matrix for viewing purposes.
AA = sparse(ii,jj,ones(M,1));

2.1.4 Suggested Parameters Settings

The primary input parameters are expressed in terms of a single integer value SCALE,
which may be used to increase the problem size (for example, SCALE = 31, 32, 33, …).
The default parameters for R-MAT and subsequent kernels are also listed below:

SSCA2 Parameter v2 setting
SCALE an integer value

SubGraphPathLength 3

K4approx
an integer value
between 1 and

SCALE

Note that for future reference, we will assume the input graph has SCALE2n = vertices,

8m n= edges and a maximum integer weight SCALE2C = . K4approx is an integer used in
an approximate algorithm for Kernel 4. When K4approx = SCALE, we say the
implementation is exact. For other settings of K4approx, we say the implementation is
approximate.

2.1.5 References

D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph mining,
SIAM Data Mining 2004.

Section 17.6, Algorithms in C (third edition). Part 5 Graph Algorithms, Robert
Sedgewick (Programs 17.7 and 17.8)

P. Sanders, Random Permutations on Distributed, External and Hierarchical Memory,
Information Processing Letters 67 (1988) pp 305-309.

2.2 Kernel 1 – Graph Construction

2.2.1 Description
The first kernel must construct a (sparse) graph from a list of tuples; each tuple contains
start and end vertex identifiers for a directed edge, and a weight that represents data
assigned to the edge.

The graph can be represented in any manner, but it cannot be modified by or between
subsequent kernels. Space may be reserved in the data structure for marking or locking,
under the assumption that only one copy of a kernel will be run at a time.

There are various representations for sparse directed graphs, including (but not limited to)
sparse matrices and (multi-level) linked lists. Representations for sparse directed graphs
may be more complicated than for sparse simple graphs. For the purposes of this

Page 5 of 10 Version 2.1 1 November 2006

application, code developers are not given the maximum size of the graph (the number of
vertices) and are expected to determine that value during graph construction.

The process of constructing the graph data structure from the set of tuples will be timed.

As an aid to verification, statistics may be collected on the graph. Calculating the
statistics may occur during the generation process or may be deferred to an untimed
verification step.

2.2.2 References
Section 17.6 Algorithms in C third edition Part 5 Graph Algorithms, Robert Sedgewick
(Program 17.9)

2.3 Kernel 2 – Classify Large Sets

2.3.1 Description
Examine all edge weights to determine those vertex pairs with the largest integer weight.
The output of this kernel will be an edge list, S, that will be saved for use in the following
kernel. The process of generating the two lists/sets will be timed.

2.4 Kernel 3 – Graph Extraction

2.4.1 Description
For each of the edges in the set S, produce a subgraph which consists of the vertices and
edges of all the paths of length SubGraphPathLength starting with that edge. A possible
computational kernel for graph extraction is Breadth-First Search. The process of graph
extraction will be timed.

2.4.2 References
Section 18.7 Algorithms in C third edition Part 5 Graph Algorithms, Robert Sedgewick
(Programs 18.8 and 18.9)

2.5 Kernel 4 – Graph Analysis Algorithm

2.5.1 Brief Description
The intent of this kernel is to identify of the set of vertices in the graph with the highest
betweenness centrality score. Betweenness Centrality is a shortest paths enumeration-
based centrality metric, introduced by Freeman (1977). This is done using a betweenness
centrality algorithm that computes this metric for every vertex in the graph. Let stσ
denote the number of shortest paths between vertices s and t , and ()st vσ the number of
those paths passing through v . Betweenness Centrality of a vertex v is defined as

() ()st

s v t V st

v
BC v

σ
σ≠ ≠ ∈

= ∑ .

Page 6 of 10 Version 2.1 1 November 2006

The output of this kernel is a betweenness centrality score for each vertex in the graph
and the set of vertices with the highest betweenness centrality score.

For kernel 4, we use the edge weights to filter a subset of edges E used in this kernel’s
input graph (),G V E= . We select only edges which have at least one bit set in the three
least significant bit positions of the binary representation of the edge weight. In other
words, edges with a weight evenly divisible by 8 are not considered in the betweenness
centrality. Hence, 7 7 .8E m n≈ = Note that it is permissible for an implementation

either to filter the edges first then run an unweighted betweenness centrality algorithm or
to modify an unweighted betweenness centrality algorithm that inspects edge weights
during execution. Kernel 4 is timed.

Because of the high computation cost of kernel 4, an exact implementation considers all
vertices as starting points in the betweenness centrality metric, while an approximate
implementation uses a subset of starting vertices (SV). We use the input parameter
K4approx, an integer set from 1 to SCALE, to vary the work performed by kernel 4.
When K4approx equals SCALE, the implementation is exact. Otherwise,

K4approx2SV = vertices are selected randomly from V .

2.5.2 Recommended algorithm
A straight-forward way of computing betweenness centrality for each vertex would be as
follows:

1. Compute the length and number of shortest paths between all pairs (),s t .
2. For each vertex v , calculate the summation of all possible pair-wise dependencies

() ()st
st

st

v
v

σ
δ

σ
= .

Recently, Brandes (2001) proposed an algorithm that computes the exact betweenness
centrality score for all vertices in the graph in ()2 lognm n nΟ + for weighted graphs, and

()nmΟ for unweighted graphs. The algorithm is detailed below:

Define the dependency of a source vertex s V∈ on a vertex v V∈ as () ()s st

t V
v vδ δ

∈

=∑ .

The betweenness centrality of a vertex v can then be expressed as () ()s
s v V

BC v vδ
≠ ∈

= ∑ .

Brandes noted that it is possible to augment Dijkstra's single-source shortest paths (SSSP)
algorithm (for weight graphs) and breadth-first search (BFS) for unweighted graphs to
compute the dependencies. Observe that a vertex v V∈ is on the shortest path between
two vertices ,s t V∈ , iff () () (), , ,d s t d s v d v t= + . Define a set of predecessors of a

vertex v on shortest paths from s as (),pred s v . Now each time an edge ,u v is

Page 7 of 10 Version 2.1 1 November 2006

scanned for which () () (), , ,d s v d s u d u v= + , that vertex is added to the predecessor set

(),pred s v . Then, the following relation would hold:
(),

sv su
u pred s v

σ σ
∈

= ∑ .

Setting the initial condition of (),pred s v s= for all neighbors v of s , we can proceed to
compute the number of shortest paths between s and all other vertices. The computation
of (),pred s v can be easily integrated into Dijkstra's SSSP algorithm for weighted graphs,

or BFS Search for unweighted graphs. Brandes also observed that the dependency ()s vδ
satisfies the following recursive relation:

 () ()()
(): ,

1sv
s s

wv pred s w sw

v wσδ δ
σ∈

= +∑ .

The algorithm proceeds as follows. First, compute n shortest paths trees, one for each
s V∈ . During these computations, also maintain the predecessor sets (),pred s v . The
dependencies can be computed by traversing the vertices in non-increasing order of their
distance from s (i.e., starting at the leaves of the shortest paths tree, and working
backwards towards s). To finally compute the centrality value of vertex v , we merely
have to sum all dependencies values computed during the n different SSSP computations.
The ()2nΟ space requirement can be reduced to ()n mΟ + by maintaining a running
centrality score.

2.5.3 Selected Pseudocode

We detail a parallel algorithm for computing betweenness centrality, based on Brandes’s
algorithm (Bader, 2006). Observe that parallelism can be exploited at two levels:

• The BFS/SSSP computations from each vertex can be done concurrently,
provided the centrality running sums are updated atomically.

• Fine-grained parallelism in the BFS/SSSP can be exploited. For instance, when
the adjacencies of a vertex are visited, the edge relaxation can be done
concurrently.

Input: (),G V E

Output: Array []1BC nK , where []BC v gives the centrality metric for vertex v
1 for all v V∈ in parallel do
2 [] 0BC v ← ;

3 let SV V⊆ and K4approx2SV = . /* exact vs. approximate */
4 for all Ss V∈ in parallel do
5 S ← empty stack;
6 []P w ← empty list, ;w V∈

7 [] []0, ; 1;t t V sσ σ← ∈ ←

Page 8 of 10 Version 2.1 1 November 2006

8 [] []1, ; 0;d t t V d s←− ∈ ←
9 queue ;Q s←
10 while Q ≠ ∅ do
11 dequeue ;v Q←
12 push ;v S→
13 for each neighbor w of v in parallel do
14 if [] 0d w < then
15 enqueue ;w Q→
16 [] [] 1;d w d v← +

17 if [] [] 1d w d v= + then

18 [] [] [];w w vσ σ σ← +

19 append [];v P w→

20 [] 0, ;v v Vδ ← ∈
21 while S ≠ ∅ do
22 pop ;w S←
23 for []v P w∈ do

24 [] [] []
[] []()1 ;
v

v v w
w

σ
δ δ δ

σ
← + +

25 if w s≠ then
26 [] [] [];BC w BC w wδ← +

2.5.4 Performance Metric (TEPS)

In order to compare the performance of SSCA2 kernel 4 implementations across a variety
of architectures, programming models, and productivity languages and frameworks, as
well as normalizing across both exact and approximate implementations, we adopt a
new performance metric described in this section. In the spirit of well-known computing
rates floating-point operations per second (flops) measured by the Linpack benchmark
and global updates per second (GUPs) measured by the RandomAccess benchmark, we
define a new rate called traversed edges per second (TEPS). We measure TEPS through
the benchmarking of kernel 4 as follows. Let ()4timeK n be the measured execution time
for kernel 4. For both the exact and approximate implementations of betweenness
centrality, the number of graph edges traversed is directly proportional to 7s sV E V n≈� � ,

where sV n= for the exact implementation and K4approx2sV = for the approximate
implementation. We define the normalized performance rate (number of edge traversals
per second) as

Page 9 of 10 Version 2.1 1 November 2006

 ()
()

()

2

4

K4approx

4

7 , for an exact implementation;time
TEPS

7 2 , for an approximate implementation.time

K

K

n
n

n
n

n

⎧
⎪⎪= ⎨

⋅⎪
⎪⎩

2.5.5 References

D.A. Bader and K. Madduri, Parallel Algorithms for Evaluating Centrality Indices in
Real-world Networks, Proc. The 35th International Conference on Parallel Processing
(ICPP), Columbus, OH, August 2006.

U. Brandes, A faster algorithm for betweenness centrality. J. Mathematical Sociology,
25(2):163–177, 2001.

L.C. Freeman, A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, 1977.

2.6 Validation

It is not intended that the results of full-scale runs of this benchmark can be validated by
exact comparison to a standard reference result. At full scale, the data set is enormous;
and its exact details depend on the pseudo-random number generator used. Therefore, the
validation of an implementation of the benchmark uses soft checking of the results.

We emphasize that the intent of this benchmark is to exercise these algorithms on the
largest data sets that will fit on machines being evaluated. However, for debugging
purposes it may be desirable to run on small data sets, and it may be desirable to verify
parallel results against serial results, or even against results from the executable spec.

The executable spec verifies its results for kernels 1-4 by comparing them with results
computed directly from the tuple list and, for modest problem sizes, by plotting various
graphs which demonstrate that the results make sense.

It is straightforward to verify kernels 1-3. Some possible validity checks for Kernel 4
(Betweenness Centrality on an R-MAT instance) include:

• All non-isolated vertices v V∈ will have a positive betweenness centrality
score [] (1)BC v n n≤ − .

• Let (),d i j be the length of any shortest path from vertex i to j . Then

() []
,

,
s t V v V
s t

d s t BC v
∀ ∈ ∈

≠

≥∑ ∑ . This relation may be used in validation by accumulating

Page 10 of 10 Version 2.1 1 November 2006

the shortest path lengths (one per pair of vertices) during kernel 4’s execution.
This sum should be greater than the sum of the n betweenness centrality scores.

• In the R-MAT instances with parameter settings, for the vertices with the highest
betweenness centrality scores, there is a direct correlation to their outdegree.
Hence, during the data generation phase, the vertices with the largest outdegree
may be marked, and compared with the results from kernel 4.

2.7 Evaluation Criteria

In approximate order of importance, the goals of this benchmark are:

• Fair adherence to the intent of the benchmark specification
• Maximum problem size for a given machine
• Minimum execution time for a given problem size

Less important goals:

• Minimum code size (not including validation code)
• Minimal development time
• Maximal maintainability
• Maximal extensibility

