
UNIVERSITY OF CALIFORNIA
Santa Barbara

An Interactive System for
Combinatorial Scientific Computing

with an Emphasis on Programmer Productivity

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Viral B. Shah

Committee in Charge:

Professor John R. Gilbert, Chair

Professor Alan Edelman

Professor Linda Petzold

Professor Frédéric Gibou

June 2007

The Dissertation of
Viral B. Shah is approved:

Professor Alan Edelman

Professor Linda Petzold

Professor Frédéric Gibou

Professor John R. Gilbert, Committee Chairperson

June 2007

An Interactive System for

Combinatorial Scientific Computing

with an Emphasis on Programmer Productivity

Copyright c© 2007

by

Viral B. Shah

iii

To my parents, and Darshan.

iv

Acknowledgements

I was extremely lucky to carry out my dissertation work at the beautiful

UCSB campus. I am glad to have been part of the computational sciences and

engineering program at UCSB, which provided me with the required training

to engage in cross-disciplinary research.

First, I would like to thank my committee for commenting on my manuscript,

which significantly improved the quality of presentation in this thesis. This

thesis would not have been possible without the superb guidance and mentorship

of my advisor, John Gilbert. I will always remain deeply indebted to him for

teaching me the art and science of conducting research. This thesis owes a great

deal to his limitless patience. I am also grateful to him for finding hundreds

of typographical errors in my manuscript. The course for this thesis was set

during my visit to MIT, hosted by Alan Edelman. His constant feedback and

suggestions greatly improved the work presented in this thesis. They both

deeply influenced the philosophical underpinnings of this work.

Research is a collaborative effort; I thoroughly enjoyed working with my

co-authors. My collaboration with Brad McRae on modeling landscape con-

nectivity was extremely fruitful, and a great learning experience. The chapter

on landscape connectivity would be nowhere close to its current form without

Brad’s extensive feedback. I would like to thank Vikram Aggarwal for helping

v

with the analysis of productivity data, the implementation of support graph

preconditioners, and for providing me with quadtree meshes. I would like to

thank Min Roh for our work on solving linear systems arising from quadtree

meshes. The work on parallel sorting was done with David Cheng at MIT.

David did a great job implementing the algorithm in its current form. The

work in computational fluid dynamics to model porous media flows was done in

collaboration with Nisheet Goyal. The timed Markov modeling of programmer

productivity was done in collaboration with Burton Smith and David Mizell of

Cray.

I had several fruitful discussions on parallel Matlab with Parry Husbands,

Ron Choy, Per-Olof Persson, Sudarshan Raghunathan, Jeremy Kepner, and

Nadya Travinin-Bliss. I also benefited a lot from discussions with Lorin Hochstein,

Jeremy Kepner, and Imran patel on programmer productivity. I am grateful to

Esmond Ng and Parry Husbands for having me at Lawrence Berkeley National

Labs as a summer intern in 2004, and to the folks at Interactive Supercomputing

for hosting me in the summers of 2005 and 2006.

I would like to thank the Department of Computer Science at UCSB, and

the DARPA/DOE HPCS program for funding my dissertation work. Several

institutions provided me with computing facilities: Interactive Supercomput-

ing, SGI, the National Center for Ecological Analysis and Synthesis at UCSB,

vi

CISE/IGERT at UCSB, and the San Diego Supercomputer Center. I am thank-

ful to the students in several parallel computing classes at UCSB who gave con-

sent for their activities to be monitored, and the UCSB Office of Research for

providing the required human test subject clearance to conduct the classroom

experiments.

I would like to thank Ajay Shah, Susan Thomas, and Ashok Srinivasan for

getting me interested in scientific computing during my undergraduate studies.

They were great mentors to me, and it is because of their early guidance that I

decided to pursue graduate studies in parallel scientific computing.

Lastly, this thesis would have not happened without the loving support of

my family. The ultimate frisbee community at UCSB and in Santa Barbara

made sure I got enough exercise, and the beaches around UCSB provided great

surf. It would have been hard to focus on research without these distractions.

I would especially like to thank my girlfriend Swapnika for religiously driving

over weekends from Los Angeles to see me. I cannot imagine having achieved

this without her support and company.

This Ph.D. has been a great journey, and I would never trade this experience

for anything else.

vii

Curriculum Vitæ

Viral B. Shah

Education

2001 Bachelor of Engineering, University of Mumbai.

Experience

2002 – 2007 Graduate Research Assistant, UC Santa Barbara.

2005 – 2007 Consultant, Interactive Supercomputing LLC.

2004 Intern, Lawrence Berkeley National Laboratory.

Selected Publications

V. B. Shah, J. R. Gilbert. Sparse matrices in Matlab*P: Design and implemen-
tation. Proceedings of High Performance Computing, 2004.

J. R. Gilbert, S. Reinhardt, V. B. Shah. High performance graph algorithms
from parallel sparse matrices. Proceedings of Workshop on State of the art in
Scientific and Parallel Computing, 2006.

A. Funk, J. R. Gilbert, D. Mizell, V. Shah. Modeling programmer workflows
with timed Markov Models. Cyberinfrastructure Technology Watch, Nov 2006.

D. Bader, K. Madduri, J. R. Gilbert, V. Shah, J. Kepner, T. Meuse, A. Krish-
namurthy. Cyberinfrastructure Technology Watch, Nov 2006.

viii

Abstract

An Interactive System for

Combinatorial Scientific Computing

with an Emphasis on Programmer Productivity

Viral B. Shah

Two trends have emerged of late in scientific computing. The first one is

the adoption of high level interactive programming environments such as Mat-

lab, R and Python. This is largely due to diverse communities in physical

sciences, engineering and social sciences using the computational experiment to

supplement results from theory and experiments. Graphs are increasingly being

used to model relationships between individual elements in many physical sys-

tems. Computation on graphs combined with numerical simulation represents

the other trend in scientific computing.

This thesis describes the design and implementation of a unified platform

for combinatorial and numerical computing in Star-P, a parallel implementa-

tion of the Matlab programming language. Sparse matrices allow structured

representation of irregular data structures, decompositions, and irregular access

patterns in parallel applications. The duality between sparse matrix algorithms

and graph algorithms is used to build a toolbox to compute with graphs in

Star-P.

ix

Circuitscape, a tool in landscape ecology, models animal movement and

gene flow as resistive networks. Initially, computation on a moderate sized

landscape required three days. The combination of distributed sparse matrices

in Star-P, the graph toolbox, and vectorization allow the same computation

to be performed within fifteen minutes. Much larger landscapes can now be

processed within a few hours.

One of the salient features of interactive environments such as Matlab and

Star-P is increased programmer productivity. This thesis describes the design

of experiments to collect productivity data from programmers. The concept of

replay is presented, which makes these experiments reproducible. The replay

also allows researchers to extract data from variables which were not observed

when the experiment was in progress. Data collected from two classroom ex-

periments is then used to construct timed Markov models of programmer pro-

ductivity.

x

Contents

Acknowledgements v

Curriculum Vitæ viii

Abstract ix

List of Figures xv

List of Tables xviii

1 Introduction 1

I Sparse Matrices and Graphs 8

2 Sparse Matrices in Star-P: Design and Implementation 9
2.1 Introduction . 9
2.2 Sparse matrices: A user’s view 12
2.3 Data Structures and Storage . 13
2.4 Operations on distributed sparse matrices 15

2.4.1 Constructors . 16
2.4.2 Element-wise Matrix Arithmetic 17
2.4.3 Matrix multiplication . 18
2.4.4 Sparse matrix indexing, assignment, and concatenation . 23
2.4.5 Sparse matrix transpose 26
2.4.6 Direct solvers for sparse linear systems 27
2.4.7 Iterative solvers for sparse linear systems 28
2.4.8 Eigenvalues and singular values 30

xi

2.4.9 Visualization of sparse matrices 30
2.5 Looking forward: A next generation parallel sparse library . . . 32
2.6 Conclusion . 37

3 Parallel Sparse Matrices and Graph Algorithms 38
3.1 Motivation . 38
3.2 Sparse matrices and graphs . 41

3.2.1 Sparse matrix multiplication 42
3.3 Graph algorithms . 44

3.3.1 Breadth-first search . 45
3.3.2 Connected Components 46
3.3.3 Maximal Independent Set 48
3.3.4 Maximum weight spanning trees 49
3.3.5 Strongly connected components 52
3.3.6 Graph contraction . 55

3.4 Graph generators . 56
3.4.1 Random graphs . 57
3.4.2 Recursive matrix generator 58
3.4.3 Regular 2D and 3D grids 60

3.5 Graph partitioning . 61
3.5.1 Geometric mesh partitioning 63
3.5.2 Spectral partitioning . 64

3.6 Conclusion . 66

4 Parallel Sorting 68
4.1 Introduction . 68
4.2 Algorithm Description . 70

4.2.1 Local sort . 72
4.2.2 Exact splitting . 72
4.2.3 Element routing . 78
4.2.4 Merging . 79

4.3 Theoretical performance . 80
4.3.1 Analysis of computation time 81
4.3.2 Analysis of communication volume 82
4.3.3 Realistic assumptions . 82

4.4 Experimental results . 83
4.4.1 Experimental setup . 83
4.4.2 Comparison with sample sorting 87

4.5 Conclusion . 91

xii

5 Applications of Star-P and the Graph Toolbox 93
5.1 An application in computational fluid dynamics 93
5.2 SSCA #2 graph analysis benchmark 96

5.2.1 SSCA#2 description . 98
5.2.2 Visualization of large graphs 104
5.2.3 Experimental Results . 105

5.3 Solution of sparse linear systems 109
5.3.1 Support graph preconditioners 109
5.3.2 Algebraic multigrid preconditioners 116

5.4 Non-negative matrix factorization 122
5.5 Conclusion . 127

6 Landscape Connectivity: An Application in Ecology 128
6.1 Introduction . 128
6.2 Modeling landscape connectivity 130
6.3 Computing effective resistance 132

6.3.1 Combinatorics in Circuitscape 136
6.3.2 Numerics in Circuitscape 139

6.4 Performance of Circuitscape in parallel 143
6.5 Conclusion . 144

II Productivity 146

7 Design of Experiments in Software Engineering 147
7.1 Motivation . 147
7.2 UCSB classroom experiments and replay 149

7.2.1 The 2004 experiment . 151
7.2.2 The 2006 experiment . 152

7.3 Questionnaires vs. automatic classification of 2004 data 155
7.4 Visualization and observations from 2006 data 160
7.5 Conclusion . 163

8 Timed Markov Models of Programmer Productivity 164
8.1 Introduction . 164
8.2 Timed Markov processes . 166
8.3 Timed Markov models of programmer workflows 168
8.4 Comparing UPC and C/MPI workflows 170
8.5 Conclusion . 174

xiii

Bibliography 175

xiv

List of Figures

2.1 Compressed sparse rows (CSR) data structure 15
2.2 Inner product formulation of matrix multiplication 20
2.3 Outer product formulation of matrix multiplication 21
2.4 Column-wise formulation of matrix multiplication 22
2.5 Multiply sparse matrices stored in the CSC format 23
2.6 Row-wise formulation of matrix multiplication 24
2.7 Matlab and Star-P spy plots of a web crawl sparse matrix . . 31
2.8 Density spy plot of a matrix . 31
2.9 Indexing by matrix multiplication 35

3.1 Breadth-first search by matrix-vector multiplication 45
3.2 Parallel connected components 47
3.3 Parallel maximal independent sets 50
3.4 Parallel maximum weight spanning tree 51
3.5 Predecessor and descendant computation 53
3.6 Parallel strongly connected components 54
3.7 Parallel Graph contraction . 56
3.8 Density spy plots of random graphs 57
3.9 Density spy plots of an R-MAT graph 58
3.10 Degree distributions in an R-MAT graph 59
3.11 Generate a sparse matrix by specifying block diagonals 60
3.12 Generate a grid for the 3D model problem 61
3.13 The model problem in 2D . 62
3.14 The model problem in 3D . 62
3.15 Geometric mesh partitioning in 2D and 3D 63
3.16 Spectral partitioning . 66

4.1 Parallel sorting with exact splitters 71

xv

4.2 Parallel selection for the kth element 74
4.3 An example to select three splitters 76
4.4 A merge tree . 79
4.5 Sorting performance for a fixed problem size 85
4.6 Sorting performance for a fixed number of processors 85
4.7 Scaling vs. linear speedup for sorting on clusters 87
4.8 Performance of cache-oblivious merging 88
4.9 Comparison of several parallel sorting algorithms 89

5.1 Geometry of the Hele-Shaw cell 94
5.2 Matrix spy plots from Hele-Shaw cells 95
5.3 Power method with shift-and-invert 96
5.4 Visualization of the SSCA#2 graph 98
5.5 Matlab spy plot of the input graph 99
5.6 Clusters in the SSCA#2 graph 101
5.7 Breadth first parallel clustering by seed growing. 102
5.8 Parallel clustering by peer pressure 103
5.9 3D visualization of the SSCA#2 graph 104
5.10 SSCA #2 v1.1 execution times (Star-P, Scale=21) 106
5.11 Vaidya preconditioners for the 2D model problem 110
5.12 Vaidya preconditioners for the 3D model problem 111
5.13 Augmented Vaidya preconditioner 112
5.14 Compute parents of nodes in a tree 114
5.15 Tree partitioning . 115
5.16 The multigrid V-cycle. 118
5.17 Solution of a linear system arising from a quadtree mesh 119
5.18 Solution of a linear system arising from a quadtree mesh 120
5.19 Euclidean update rules for NNMF 124
5.20 Divergence update rules for NNMF 125
5.21 Efficient computation of sparse products in NNMF 125

6.1 Comparison of various connectivity metrics 131
6.2 Yellowstone-to-Yukon conservation region 134
6.3 A southern California landscape 137
6.4 Landscape graph construction with stencil operations 138
6.5 Landscape graph manipulations 139
6.6 Laplacian of a graph . 139
6.7 Scaling of the effective resistance computation 142

8.1 A timed Markov process . 167

xvi

8.2 Lone programmer workflow . 168
8.3 TMM from the 2004 classroom experiment 171
8.4 TMM for UPC from the 2006 classroom experiment 172
8.5 TMM for MPI from the 2006 classroom experiment 173

xvii

List of Tables

3.1 Correspondence between sparse matrix and graph operations . . 40

5.1 Time to solve the generalized eigenvalue problem 97
5.2 LOC for Star-P implementation of SSCA#2 107

6.1 Fill-in and flops required to solve landscape problems 140
6.2 Time (in seconds) spent in various stages of Circuitscape in se-
quential Matlab . 141
6.3 Time (in seconds) spent in various stages of Circuitscape in
Star-Pwith 8 processors. 143
6.4 Time (in seconds) spent in various stages of Circuitscape in
Star-Pwith 14 processors. 144

7.1 Compile-time questionnaire and heuristics 157
7.2 Self-reported versus automatic questionnaires. 158
7.3 MPI and UPC activities in half hour intervals 161
7.4 MPI and UPC activities in half hour intervals 162
7.5 Programmer performance on assignment 1 in 2006 163

xviii

Chapter 1

Introduction

Programming environments such as Matlab [91], R [74], and Python [121]

are becoming popular for numerical computations. Their dynamic nature, in-

teractivity, and high level domain specific abstractions make them very popular

among scientists and engineers. Scientific computing is no longer practised only

by engineers and physicists, as has been the case until recently. Several diverse

research communities now include computation in their research methodology,

on par with theory and experiments. In the sciences, users of computational

techniques include biologists, chemists, ecologists, mathematicians, and statisti-

cians. Computational methods are also becoming popular in the social sciences,

such as economics, finance, sociology, and psychology. As a result, modern ap-

plications require a wider variety of computational techniques.

Traditionally, numerical computing has been the focus of scientific com-

puting. Matlab has made numerical computing accessible to scientists and

1

Chapter 1. Introduction

engineers who are not necessarily experts in numerical computing. Clusters

have made it possible for anyone with a modest budget to buy a small super-

computer. The advent of multicore CPUs has brought parallel computing to

desktops. However, advances in sequential scientific computing have yet to be

realized in the case of high performance computing.

Emerging high performance applications such as web search, information re-

trieval, data mining, knowledge discovery, bioinformatics, computational biol-

ogy, multiscale modeling, geometric modeling, etc. have a combinatorial aspect

in addition to the numerical aspect of their problem solving. Breakthroughs in

such areas require a better way to program high performance computers, com-

bining modern numerical and combinatorial tools in one easy to use package.

A parallel implementation of the matlab programming language such as

Star-P is a step in the right direction. Star-P [72] does not require the user

to be an expert on parallel computing, numerical computing, or combinatorial

computing. It extends the matlab language with only a handful of operators and

commands, which makes it easy to use for anyone familiar with Matlab. The

result is a system that allows for very high efficiencies in time to solution while

simultaneously harnessing the power of modern high performance computers.

This thesis will address both parts of the puzzle:

2

Chapter 1. Introduction

1. Design an easy to use programming environment for high performance

numerical and combinatorial computing. (Part I).

2. Measure the gains in productivity realized through such a system. (Part

II).

Modern languages for numerical computing provide sparse arrays as a basic

data structure. In Matlab sparse matrices are first class objects, since almost

any operation that can be performed on a dense matrix can be performed on

a sparse matrix. Chapter 3 describes the design and implementation of sparse

matrix support in Star-P. Sparse matrix computations allow structured rep-

resentation of irregular data structures, decompositions, and irregular access

patterns in parallel applications. One of the innovative contributions of this

thesis is an outline for the construction of an infrastructure for numerical and

combinatorial computing on top of a sparse array implementation.

First, a suitable data structure and data decomposition for sparse matrices

are fixed. The data is stored in compressed rows, while the sparse matrix itself is

split by rows across processors. No other layouts or distributions are supported

deliberately to keep the implementation robust and simple. All operations such

as matrix constructors, arithmetic, matrix multiplication, and indexing are then

designed to provide good performance for these design decisions. One operation

3

Chapter 1. Introduction

that a system such as Star-P needs to perform frequently is a test for matrix

symmetry.

Sparse matrix multiplication is another very important primitive. Sparse

matrix dense vector multiplication is a well studied problem, and its efficient

implementation in Star-P allows access to a variety of Krylov subspace algo-

rithms for solutions of linear systems and eigenvalue problems. Sparse matrix

matrix multiplication, on the other hand, is a very useful primitive for combi-

natorial computing.

Sparse matrices and graphs are duals of each other. This makes it possible

for graph algorithms in Star-P to be implemented as operations on sparse ma-

trices. Thus the numerical computing infrastructure in Star-P is leveraged to

provide a comprehensive infrastructure for combinatorial computing. Chapter

3 describes some parallel graph algorithms in detail. The combinatorial com-

puting capability is built as a toolbox, which provides several graph querying

capabilities, graph operations and visualization tools.

Sorting is another primitive that is commonly used in computations on irreg-

ular data. A lot of the sparse matrix support in Star-P is built upon parallel

sorting. Chapter 4 describes the parallel sorting algorithm used in Star-P for

general purpose sorting. Sorting is used very often in a variety of ways to aid

4

Chapter 1. Introduction

combinatorial computing, mainly to generate orderings which may expose the

combinatorial structure of the underlying data.

The usefulness of such an infrastructure for building higher level tools is

described in Chapter 5. The graph toolbox is used to implement SSCA#2,

a graph analysis benchmark. Chapter 5 also describes the implementation of

combinatorial preconditioners and non-negative matrix factorizations. Precon-

ditioners accelerate the solution of linear systems by iterative methods, whereas

non-negative matrix factorizations are useful for pattern discovery.

Chapter 6 describes an application in Circuitscape, an application in com-

putational ecology. Dispersal is a key process in maintaining healthy and viable

animal populations. Circuitscape models a landscape as a graph, specifically

a resistive network. The computation has a combinatorial part which involves

manipulating very large graphs, and a numerical part, which involves solving

large sparse linear systems to compute effective resistance. The combination

of distributed sparse matrices in Star-P, the graph toolbox, and vectorization

allow computations on large landscapes, which wasn’t possible earlier.

So far, intuition has been the basis of most programming language design.

It would be nice to convert this art to science. To this end, methods to collect

and analyze data from programmers are proposed, in order to say something

meaningful about their productivity.

5

Chapter 1. Introduction

Data was gathered from two instances of our parallel computing class at UC

Santa Barbara in 2004 and 2006. In 2004, the students programmed a parallel

sorting algorithm in MPI. In 2006, they programmed the game of Life. Half the

class used MPI, while the other half used UPC. We instrumented the compile

and runtime environments to collect data such as timestamps, durations, code

snapshots etc.

The experimental setup evolved quite a bit from 2004 to 2006. In 2004,

the instrumentation had a questionnaire that prompted the student at every

compile. It turns out that the compile reason can be guessed automatically

using the replay. The replay is a process in which every snapshot of a student

code is rerun, and all runtime data, including program state (correctness, failure,

crash) is captured. The replay essentially allows the experimenter to go back

and re-examine the experiment in a fully controlled environment.

Since the 2004 data gathering proved that questionnaires are redundant, the

2006 experiment instead focused on providing harnesses to students which in-

clude data generators, validators, Makefiles, etc. This experiment was designed

to allow perfect replay.

Once the data is collected, a model is needed to interpret it. One such

model is a Timed Markov model. A programmer’s workflow may be thought

of as a directed graph. The nodes of the graph represent activities such as

6

Chapter 1. Introduction

run, debug, optimize, compile etc. The edges represent transitions between

activities. This thesis provides a study of students programming in UPC and

C/MPI, comparing and contrasting their workflows. This is one model which

may allow quantitative analysis of different programming languages.

It is important that a language designer worry about programmer productiv-

ity. Language design and programmer productivity are not isolated problems;

they go hand in hand. Better productivity metrics provide better feedback to

the language designer, which in turn leads to a system which allows higher levels

of productivity.

7

Part I

Sparse Matrices and Graphs

8

Chapter 2

Sparse Matrices in Star-P:
Design and Implementation

2.1 Introduction

The numerical computing community has a strong discipline of developing

high quality library codes. EISPACK [113] and LINPACK [42] are some of the

oldest numerical libraries, developed in the 1960s. They have since been super-

seded by BLAS [19] and LAPACK [7]. Today, libraries such as GotoBLAS [63],

ATLAS [126], FFTW [51], and OSKI [122] provide efficient implementations

of commonly used routines in scientific computing. Netlib [26] maintains a

comprehensive list of mathematical software and papers.

Matlab [91] is a widely used tool in scientific computing. It started in the

1970s as an interactive interface to EISPACK and LINPACK. Today, Matlab

provides a fully featured programming environment encompassing modern nu-

9

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

merical libraries such as ATLAS [126], LAPACK [7], FFTW[51], rich graphics

capabilities for visualization, and several domain specific toolboxes.

The landscape of computing has changed a lot in the last few years. Higher

performance no longer comes from faster clock speeds, but from newer archi-

tecture breakthroughs. Clusters became increasingly common in the 1990s, and

shared memory architectures are making a comeback. Multi-core CPUs are al-

ready in use, with more and more processor cores being packed together in a

single CPU socket.

The question naturally arises: How does one program these computers ?

Matlab is widely used by non-computer scientists, and more so by those who

are not experts at technical or parallel computing. Such programmers would

prefer to use the tools they are familiar with on newer architectures. Several

attempts were made to create a parallel Matlab [32]. We believe Star-P [76] is

the most promising of all such approaches. Star-P was originally an academic

project at MIT and UCSB, and has since been commercialized. Much of the

work described in this thesis has been incorporated into Star-P, or built on

the Star-P platform.

The basic design of the Star-P system and operations on dense matrices

have been discussed in earlier work [33, 72, 73]. We will focus on the design of

the sparse matrix infrastructure in Star-P, with the eventual goal to use it as

10

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

a common platform for numerical and combinatorial computing. We will specif-

ically not focus on task parallel computing in Star-P, which in the past has

been referred to as MM-mode and is now called ppeval. Briefly, the idea behind

ppeval is to express iteration without loops, and instead focus on data [125].

The original MM-mode was extended to use a global address space, and this was

referred to as GAS-MM. We will restrict our focus to data parallel computing with

distributed sparse matrices.

Sparse matrices may have dimensions that are in millions or hundreds of

millions, and enough non-zeros that they cannot fit on a single workstation.

Sometimes, the sparse matrices are themselves not too large, but due to the

fill caused by intermediate operations (for e.g. LU factorization), it becomes

necessary to distribute the factors over several processors. The goal of sparse

matrix support in Star-P is to allow users to perform operations on sparse

matrices as transparently as in Matlab.

It is true in Matlab, as well as in Star-P, that many key operations are

provided by public domain software (linear algebra, solvers, fft, etc.). Apart

from simple operations such as array arithmetic, Matlab allows matrix multi-

plication, array indexing, array assignment and concatenation of arrays, among

other things. These operations form extremely powerful primitives upon which

other functions, toolboxes, and libraries are built. The challenge in the im-

11

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

plementation lies in selecting the right data structures and algorithms which

implement all operations efficiently, allowing them to be combined in any num-

ber of ways.

2.2 Sparse matrices: A user’s view

In addition to Matlab’s sparse and dense matrices, Star-P provides sup-

port for distributed sparse (dsparse) and distributed dense (ddense) matrices.

The p operator provides for parallelism in Star-P. For example, a random

parallel dense matrix (ddense) distributed by rows across processors is created

as follows:

>> A = rand (100000*p, 100000)

Similarly, a random parallel sparse matrix (dsparse) also distributed across pro-

cessors by rows is created as follows: (The third argument specifies the density

of non-zeros):

>> S = sprand (1000000*p, 1000000, 0.001)

We use the overloading facilities in Matlab to define a dsparse object. The

Star-P language requires that almost all (meaningful) operations that can be

performed in Matlab be possible with Star-P. Our implementation provides

a working basis, but is not quite a drop–in replacement for existing Matlab

12

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

programs. The rest of this chapter will describe the design decisions taken,

trade-offs made, and lessons learnt.

Star-P achieves parallelism through polymorphism. Operations on ddense

matrices produce ddense matrices. But, once initiated, sparsity propagates.

Operations on dsparse matrices produce dsparse matrices. An operation on a

mixture of dsparse and ddense matrices produces a dsparse matrix unless the

operator destroys sparsity. The user can explicitly convert a ddense matrix to a

dsparse matrix using sparse (A). Similarly a dsparse matrix can be converted

to a ddense matrix using full (S). A dsparse matrix can also be converted

into a Matlab sparse matrix using ppfront(S).

2.3 Data Structures and Storage

Compressed row and column data structures have been shown to be efficient

for sparse linear algebra [66]. Matlab stores sparse matrices on a single pro-

cessor in a Compressed Sparse Column (CSC) data structure [56]. The Star-

P language allows ddense matrices to be distributed by block rows or block

columns [33, 72]. Our implementation supports only the block row distribution

for dsparse matrices. This is a design choice to prevent the combinatorial ex-

plosion of argument types. Block layout by rows makes the Compressed Sparse

13

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Row data structure a logical choice to store the sparse matrix slice on each pro-

cessor. The choice to use a block row layout is not arbitrary, but the reasoning

is as follows:

• The iterative methods community largely uses row based storage. Since

we believe that iterative methods will be the methods of choice for large

sparse matrices, we want to ensure maximum compatibility with existing

code.

• A row based data structure also allows efficient implementation of “matvec”

(sparse matrix dense vector product), the workhorse of several iterative

methods such as Conjugate Gradient and Generalized Minimal Residual.

For the expert user, storing sparse matrices by rows instead of by columns

changes the programming model. For instance, high performance sparse matrix

codes in Matlab are often carefully written so that all accesses into sparse

matrices are by columns. When run in Star-P, such codes may display different

performance characteristics, since dsparse matrices are stored by rows.

The CSR data structure stores whole rows contiguously in a single array on

each processor. If a processor has nnz non-zeros, CSR uses an array of length

nnz to store the non-zeros and another array of length nnz to store column

14

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

0 a01 a02 0

0 a11 0 a13

a20 0 0 0

0 2

0

4 5

1 2 1 3

a20a01 a02 a11 a13

Row Pointers

Column Indices

Non-zeros

Figure 2.1: The matrix is shown in its dense representation on the left, and
its compressed sparse rows (CSR) representation on the right. In the CSR data
structure, non-zeros are stored in three vectors. Two vectors of length nnz store
the non-zero elements and their column indices. A vector of row pointers marks
the beginning of each new row in the non-zero and column index vectors.

indices, as shown in Figure 2.1. Row boundaries are specified by an array of

length m + 1, where m is the number of rows on that processor.

Using double precision floating point values for the non-zeros on 32-bit archi-

tectures, an m×n real sparse matrix with nnz non-zeros uses 12nnz +4(m+1)

bytes of memory. On 64-bit architectures, it uses 16nnz + 8(m + 1) bytes.

Star-P supports complex sparse matrices as well. In the 32-bit case, the stor-

age required is 20nnz + 4(m + 1) bytes, while it is 24nnz + 8(m + 1) bytes on

64-bit architectures.

2.4 Operations on distributed sparse matrices

The design of sparse matrix algorithms in Star-P follows the same design

principles as in Matlab [56].

15

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

1. Storage required for a sparse matrix should be O(nnz), proportional to

the number of non-zero elements.

2. Running time for a sparse matrix algorithm should be O(flops). It should

be proportional to the number of floating point operations required to

obtain the result.

The data structure described in the previous section satisfies the require-

ment for storage. The second principle is difficult to achieve exactly in practice.

Typically, most implementations achieve running time close to O(flops) for

commonly used sparse matrix operations. For example, accessing a single ele-

ment of a sparse matrix should be a constant time operation. With a CSR data

structure, it typically takes time porportional to the logarithm of the length of

the row to access a single element. Similarly, insertion of single elements into

a CSR data structure generates extensive data movement. Such operations are

efficiently performed with the sparse/find routines (described next), which

work with triples rather than individual elements.

2.4.1 Constructors

There are several ways to construct distributed sparse matrices in Star-P:

16

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

1. ppback converts a sequential Matlab matrix to a distributed Star-P

matrix. If the input is a sparse matrix, the result is a dsparse matrix.

2. sparse creates a sparse matrix from dense vectors giving a list of non-zero

values. A distributed sparse matrix is automatically created, if the dense

vectors are distributed. find is the dual of sparse; it extracts the nonzeros

from a sparse matrix.

3. speye creates a sparse identity matrix.

4. spdiags constructs a sparse matrix by specifying the values on diagonals.

5. sprand and sprandn construct random sparse matrices with specified den-

sity.

6. spones creates a sparse matrix with the same non-zero structure as a

given sparse matrix, where all the non-zero values are 1.

2.4.2 Element-wise Matrix Arithmetic

Sparse matrix arithmetic is implemented using a sparse accumulator (SPA).

Gilbert, Moler and Schreiber [56] discuss the design of the SPA in detail. Briefly,

a SPA uses a dense vector as intermediate storage. The key to making a SPA

work is to maintain auxiliary data structures that allow direct ordered access to

17

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

only the non-zero elements in the SPA. Star-P uses a separate SPA for each

processor.

2.4.3 Matrix multiplication

Sparse matrix dense vector multiplication

A sparse matrix can be multiplied by a dense vector either on the right or

the left. The CSR data structure used in Star-P is efficient for multiplying a

sparse matrix by a dense vector: y = A ∗ x. It is efficient for communication

and shows good cache behavior for the sequential part of the computation. Our

choice of the CSR data structure was heavily influenced by our desire to have

good matvec performance, since matvec forms the core computational kernel

for many iterative methods.

The matrix A and vector x are distributed across processors by rows. The

submatrix of A on each processor will need some subset of x depending upon its

sparsity structure. When matvec is invoked for the first time on a dsparse ma-

trix A, Star-P computes a communication schedule for A and caches it. When

later matvecs are performed using the same A, this communication schedule

does not need to be recomputed, which saves some computing and communi-

cation overhead, at the cost of extra space required to save the schedule. We

experimented with overlapping computation and communication in matvec. It

18

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

turns out in many cases that this is less efficient than simply performing the

communication first, followed by the computation. As computer architectures

evolve, this decision may need to be revisited.

Communication in matvec can be reduced by graph partitioning. If fewer

edges cross processors, less communication is required during matvec. Star-

P can use several of the available tools for graph partitioning [29, 60, 100].

However, Star-P does not perform graph partitioning automatically during

matvec. The philosophy behind this decision is similar to that in Matlab:

reorganizing data to make later operations more efficient should be possible for

the user, but not automatic.

When multiplying from the left, y = x′ ∗ A, the communication is not as

efficient. Instead of communicating the required subpieces of the source vector,

each processor computes its own destination vector. All partial destination vec-

tors are then summed up into the final destination vector. The communication

required is always O(n). The choice of the CSR data structure, while making

the communication more efficient when multiplying from the right, makes it

more difficult to multiply on the left.

Sparse matrix dense matrix multiplication in Star-P is implemented as a

series of matvecs. Such operations although not very common, do often show

up in practice. It is tempting to simply convert the sparse matrix to a dense

19

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

01 function C = mult inner prod (A, B)

02 % Inner product formulation of matrix multiplication

03

04 for i = 1:n % For each row of A

05 for j = 1:n % For each col of B

06 C(i, j) = A(i, :) * B(:, j);

07 end

08 end

Figure 2.2: Inner product formulation of matrix multiplication. Every element
of C is computed as a dot product of a row of A and a column of B

matrix and perform dense matrix multiplication, since the result is dense any-

ways. Doing so, however, would require extra flops. Such a scheme may also

be inefficient in storage if the resulting matrix is smaller in dimensions than the

sparse argument.

Sparse matrix sparse matrix multiplication

The multiplication of two sparse matrices is an important operation in Star-

P. It is a common operation for operating on large graphs. Its application to

graph manipulation is described in chapter 3, and in the implementation of a

multigrid solver in chapter 5. The sparse matrix multiplication algorithm we

use is discussed by Robertson [103].

The computation for matrix multiplication can be organized in several ways,

leading to different formulations. One common formulation is the inner product

20

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

01 function C = mult outer prod (A, B)

02 % Outer product formulation of matrix multiplication

03

04 for k = 1:n

05 C = C + A(:, k) * B(k, :);

06 end

Figure 2.3: Outer product formulation of matrix multiplication. C is com-
puted as a sum of n rank one matrices.

formulation, as shown in code fragment 2.2. In this case, every element of the

product Cij is computed as a dot product of a row i in A and a column j in B.

Another forumulation of matrix multiplication is the outer product formu-

lation (code fragment 2.3. The product is computed as a sum of n rank one

matrices. Each rank one matrix is computed as the outer product of column k

of A and row k of B.

Matlab stores its matrices in the CSC format. Clearly, computing inner

products (code fragment 2.2) is inefficient, since rows of A cannot be efficiently

accessed without searching. Similarly, in the case of computing outer products

(code fragment 2.3), rows of B have to be extracted. The process of accumulat-

ing successive rank one updates is also inefficient, as the structure of the result

changes with each successive update.

The computation can be setup so that A and B are accessed by columns,

computing one column of the product C at a time. Code fragment 2.4 shows

21

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

01 function C = mult csc (A, B)

02 % Multiply matrices stored in compressed sparse column format

03

04 for i = 1:n

05 for k where B(k,j) ~= 0

06 C(:, j) = C(:, j) + A(:, k) * B(k, j);

07 end

08 end

Figure 2.4: The column-wise formulation of matrix multiplication accesses all
matricesA, B and C by columns only

how column j of C is computed as a linear combination of the columns of A as

specified by the nonzeros in column j of B. Figure 2.5 shows the same concept

graphically.

Star-P stores its matrices in CSR form. As a result, the computation is

setup so that only rows of A and B are accessed, producing a row of C at a

time. Each row i of C is computed as a linear combination of the rows of B

specified by non-zeros in row i of A (code fragment 2.6).

The performance of sparse matrix multiplication in parallel depends upon

the non-zero structures of A and B. A well-tuned implementation may use a

polyalgorithm. Such a polyalgorithm may use different communication schemes

for different matrices. For example, it may be efficient to broadcast the local

part of a matrix to all processors, but in other cases, it may be efficient to

send only the required rows. On large clusters, it may be efficient to interleave

22

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Figure 2.5: Multiplication of sparse matrices stored by columns. Columns
of A are accumulated as specified by the non-zero entries in a column of B
using a SPA. The contents of the SPA are stored in a column of C once all
required columns are accumulated. Image reproduced with permission from
John Gilbert.

communication and computation. On shared memory architectures, however,

most of the time is spent accumulating updates, rather than in communication.

In such cases, it may be more efficient to schedule the communication before

the computation. In the general case, the space required to store C cannot be

determined quickly, and Cohen’s algorithm [34] may be used in such cases.

2.4.4 Sparse matrix indexing, assignment, and concate-

nation

Several choices are available to the implementor to design primitives upon

which a sparse matrix library is built. One has to decide early on in the design

23

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

01 function C = mult csr (A, B)

02 % Multiply matrices stored in compressed sparse row format

03

04 for i = 1:n

05 for k where A(k,j) ~= 0

06 C(i, :) = C(i, :) + A(i, k) * B(k, :);

07 end

08 end

Figure 2.6: The row-wise formulation of matrix multiplication accesses all
matrices A, B and C by rows only.

phase which operations will form the primitives and how other operations will

be derived from them.

The syntax of matrix indexing in Star-P is the same as in Matlab. It is

of the form A(p, q), where p and q are vectors of indices.

>> B = A(p,q)

In this case, the indexing is done on the right side of “=”, which specifies

that B is assigned a submatrix of A. This is the subsref operation in Matlab.

>> B(p,q) = A

On the other hand, indexing on the left side of “=” specifies that A should

be stored as a submatrix of B. This is the subsasgn operation in Matlab.

Repeated indices in subsref cause replication of rows and columns. However,

subsasgn with repeated indices is not well defined.

24

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Matlab supports horizontal and vertical concatenation of matrices. The

following code, for example, concatenates A and B horizontally, C and D hori-

zontally, and finally concatenates the results of these two operations vertically.

>> S = [A B; C D]

All of these operations are widely used, and users often do not give second

thought to the way they use indexing operations. The operations have to accept

any sparse matrix, and return a result in the same form with reasonable per-

formance. In a parallel implementation such as Star-P, another dimension of

complexity is added by communication. Performance of sparse indexing oper-

ations depends upon the underlying data structure, the indexing scheme being

used, the non-zero structure of the matrix, and the speed of the communication

network.

Our implementation uses sparse and find as primitives to implement sparse

indexing. The idea is actually quite simple. First, find all elements that match

the selection criteria on each processor. Depending on the operation being

performed, rows and columns may need to be renumbered. Once all processors

have picked the non-zero tuples which will contribute to the result, call sparse

to assemble the matrix.

25

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Such a scheme is elegant because all the complexity of communication is

hidden in the call to sparse. This simplifies the job for the implementor, who

can focus a great deal of effort into developing an efficient sparse routine.

2.4.5 Sparse matrix transpose

Matrix transpose exchanges the rows and columns of all elements of the

matrix. Transpose is an important operation, and has been widely studied in the

dense case. In a sparse transpose, apart from communication, the communicated

elements have to be re-inserted into the sparse data structure. The Matlab

syntax for matrix transpose is as follows:

>> S = A’

Sparse matrix transpose can be easily implemented using the sparse and

find primitives. First, find all nonzero elements in the sparse matrix with find.

Then construct the transpose with sparse, exchanging the vectors for rows and

columns.

[I, J, V] = find (S);

St = sparse (J, I, V);

26

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

2.4.6 Direct solvers for sparse linear systems

Matlab solves the linear system Ax = b with the matrix division operator,

x = A\b. In sequential Matlab, A\b is implemented as a polyalgorithm [56],

where every test in the polyalgorithm is cheaper than the next one.

1. If A is not square, solve the least squares problem.

2. Otherwise, if A is triangular, perform a triangular solve.

3. Otherwise, test whether A is a permutation of a triangular matrix (a

“morally triangular” matrix), permute it, and solve it if so.

4. Otherwise, if A is Hermitian and has positive real diagonal elements, find

a symmetric approximate minimum degree ordering p of A, and perform

the Cholesky factorization of A(p, p). If successful, finish with two sparse

triangular solves.

5. Otherwise, find a column minimum degree order p, and perform the LU

factorization of A(:, p). Finish with two sparse triangular solves.

The current version of Matlab uses CHOLMOD [31] in step 4, and UMF-

PACK [38] in step 5. Matlab also uses LAPACK [7] band solvers for banded

matrices in its current polyalgorithm.

27

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Different issues arise in parallel polyalgorithms. For example, morally trian-

gular matrices and symmetric matrices are harder to detect in parallel. In the

next section, we present a probabilistic approach to test for matrix symmetry.

Design of the best polyalgorithm for “backslash” in parallel is an active re-

search problem. For now, Star-P offers the user a choice between two existing

message-passing parallel sparse solvers: MUMPS [5] and SuperLU Dist [86].

Sparse solvers are extremely complex pieces of software, often taking several

years to develop. They use subtle techniques to extract locality and parallelism,

and have complex data structures. Most sparse solvers provide an interface

only to solve linear systems, x = A b. They often do not provide an interface

for the user to obtain the factors from the solve, [L, U] = lu(A). Matlab

uses UMFPACK only when backslash or the four output version of lu is used,

[L, U, P, Q] = lu(A). Many Matlab codes store the results of LU factorization

for later use. Since Star-P does not yet provide a sparse lu implementation,

it may not be able to run certain Matlab codes in parallel.

2.4.7 Iterative solvers for sparse linear systems

Iterative solvers for sparse linear systems include a wide variety of algorithms

that use successive approximations at each step. Stationary methods are older,

simpler, but usually not very effective. These include methods such as Jacobi,

28

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Gauss-Seidel and successive overrelaxation. Nonstationary methods, also known

as Krylov subspace methods, are relatively modern, and based on the idea of

sequences of orthogonal vectors. Their convergence typically depends upon the

condition number of the matrix. Often, a preconditioner is used to transform a

given matrix into one with a more favorable spectrum, accelerating convergence.

Iterative methods are not used by default for solving linear systems in Star-

P. This is mainly because efficient methods are not yet available for all classes of

problems. Conjugate Gradient (CG) works well for matrices which are symmet-

ric and positive definite (SPD). Methods such as Generalized Minimal Residual

(GMRES) or Biconjugate gradient (BiCG, BiCGStab) are used for unsymmetric

matrices. However, convergence may be irregular, and it is also possible that

the methods may break.

Even when using CG, a preconditioner is required for fast convergence. Pre-

conditioners are often problem specific; their construction often requires knowl-

edge of the problem at hand. An exciting new area of research is combinatorial

preconditioners. The graph toolbox in Star-P provides tools for users to build

such preconditioners. This is further described in chapters 3 and 5.

Although Star-P does not use iterative methods by default, it provides

several tools for users to use them when suitable. Preconditioned iterative

29

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

methods from software such as Aztec [107] and Hypre [47] may also be used in

Star-P through the Star-P SDK [75].

2.4.8 Eigenvalues and singular values

Star-P provides eigensolvers for sparse matrices through PARPACK [90].

PARPACK uses a reverse communication interface, in which it provides the

essential routines for the Arnoldi factorization, and requires the user to provide

routines for matvec and linear solves. Star-P implementations of matvec and

linear solvers are discussed in earlier sections of this chapter.

Star-P retains the same calling sequence as the Matlab eigs function.

Star-P can also provide singular values in a similar fashion, and retains the

same calling sequence for svds.

2.4.9 Visualization of sparse matrices

We have experimented with a few different methods to visualize sparse ma-

trices in Star-P. A Matlab spy plot of a sparse matrix shows the positions

of all non-zeros. For extremely large sparse matrices, this approach does not

work very well since each pixel on the screen represents a fairly large part of a

matrix. Figure 2.7 shows a Matlab spy plot of a web crawl matrix. It also

shows a coloured spy plot with a different color for each processor. The row-wise

30

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Figure 2.7: Matlab and Star-P spy plots of a web crawl sparse matrix. The
Star-P plot also exposes the underlying block row distribution of the sparse
matrix. The matrix was constructed by running a breadth-first web crawl from
www.mit.edu.

Matrix nr = 1024, nc = 1024, nnz = 6671
Bucket nnz: max = 113, min = 0, avg = 1.62866, total = 6671, max/avg = 69

10 20 30 40 50 60

10

20

30

40

50

60

0

28.25

56.5

84.75

113

Figure 2.8: A density spy plot. For large matrices, spy may not display the
underlying structure. A density plot colors each pixel according the density of
the area of the sparse matrix it represents.

31

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

distribution of the matrix is clearly observed in the colored spy plot. Another

approach is to use a 2D histogram or a density spy plot, such as the one in Fig-

ure 2.8, which uses different colors for different non-zero densities. spyy uses

sparse matrix multiplication to produce density spy plots. It is similar to the

cspy routine in CSparse [39], with the exception that cspy is implemented as in

C, and cannot be used in Star-P. spyy operates on large dsparse matrices on

the backend, but the resulting images are small, which are easily communicated

to the frontend.

Sparse matrix visualization is an exciting area with a lot of open questions.

Since visualization is not our main contribution we do not pursue this topic

further. We will briefly return to it later in chapter 5 in the context of graphs.

2.5 Looking forward: A next generation paral-

lel sparse library

We discuss the design goals of a next generation parallel sparse library in

this section.

Our initial goal was to develop a parallel sparse library for Star-P simi-

lar to the one in Matlab. We wanted it to be robust, scalable, efficient and

simple. Hence, all the design decisions we made always favored robustness and

32

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

simplicity. For instance, we decided early on to support only the CSR data

structure to store sparse matrices, and use a 1D block layout by rows. A 2D

layout may be more efficient, and it would definitely be nice to support other

data structures for storage. However, these would complicate the implementa-

tion to a point where it may not be possible to implement all the operations we

currently support for all combinations of data structures and layouts.

That said, there are some crucial differences between Matlab and Star-

P’s sparse libraries. First, Matlab’s focus is solely on numerical computing.

However, sparse matrices are increasingly lending themselves to more than just

numerical computing. Second, parallel computing is still not as easy as sequen-

tial computing. Parallel sparse matrices provide an elegant way for a user to

represent large sparse datasets as matrices without using complex data struc-

tures to store and query them. Operations on such large datasets often require

irregular communication and irregular data access. Sparse matrix computations

allow this to be done in a concise and systematic way, without worrying about

low level details. One example is the use of sparse matrices to represent graphs

for combinatorial computing, as discussed further in chapter 3.

From our experience with the Star-P sparse matrix library, we have learnt

a few lessons which might be helpful for the development of the next generation

parallel sparse library.

33

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

Although the CSR data structure has served us well, it does cause some

problems. Matlab codes written to specifically take advantage of the column

storage of sparse matrices must be rewritten to use row storage. Although it

is not yet clear how much the performance difference may be for a real life

application, it is inconvenient for a user writing highly tuned codes using sparse

matrices. Such a code will also have different performance characteristics in

Matlab and Star-P.

We propose adding a third design principle to the two stated in section 2.4.

The difference in performance between accessing a sparse matrix by rows or

columns must be minimal. Users writing sparse matrix codes should not have

to worry about organizing their sparse matrix accesses by rows or columns, just

as they do not worry about how dense matrices are stored.

For an example of the third principle, consider the operation below. It is

much simpler to extract the submatrix specified by p from a matrix stored in

the CSR format than from a matrix stored in the CSC format. In the latter

case, a binary search is required for every column, making the operation slower.

>> A = S(p, :) % p is a vector

A parallel sparse library that needs to scale to hundreds or thousands of

processors will not work well with a one-dimensional block layout. A two-

dimensional block layout is essential for scalability of several sparse matrix op-

34

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

01 function B = index by mult (A, I, J)

02 % Index a matrix with matrix multiplication

03

04 [nrows, nccols] = size(A);

05 nI = length(I);

06 nJ = length(J);

07

08 % Multiply on the left to pick the required rows

09 row select = sparse(1:nI, I, 1, nI, nr);

10

11 % Multiply on the right to pick the required columns

12 col select = sparse(J, 1:nJ, 1, nc, nJ);

13

14 % Compute B with sparse matrix multiplication

15 B = row select * A * col select;

Figure 2.9: Matrix indexing and concatenation can be implemented using
sparse matrix-matrix multiplication as a primitive. Multiplication from the left
picks the necessary rows, while multiplication from the right picks the necessary
columns.

erations. The benefits of 2D layouts are well known at this point, and we will

not reiterate them. It is important to note that compressed row/column data

structures are not efficient for storing sparse matrices in a 2D layout.

Another point of departure is a different primitive for indexing operations.

Currently, we use the “sparse-find” method to perform all the indexing opera-

tions such as submatrix indexing, assignment, concatenation and transpose. We

used the concept of the sparse function as a primitive using which we built the

rest of the operations. We propose that a next generation sparse matrix library

should use sparse matrix multiplication as the basic primitive in the library.

35

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

We illustrate the case of submatrix indexing using matrix multiplication.

Suppose A is a matrix, and we wish to extract the submatrix B = A(I, J).

Multiplying from the left picks out the rows, while multiplying from the right

picks out the columns, as shown in code fragment 2.9.

We believe that it will be possible to implement sparse matrix multiplication

more efficiently with a 2D block distribution than a 1D block distribution for

large numbers of processors. Indexing operations may then be implemented

using sparse matrix multiplication as a primitive. An efficient sparse matrix

multiplication implementation might actually use a polyalgorithm to simplify

the implementation for special cases when more information is available about

the structure of matrices being multiplied, as is the case for indexing operations.

The choice of a suitable data structure to store sparse matrices in a 2D block

layout and allow efficient matrix multiplication still remains an open question

for future research. We believe that once the right data structure is selected,

there will not be a large difference in performance when multiplying from the

left or the right. This directly translates into symmetric performance for all

indexing operations when accessing a matrix either by rows or columns. We

believe this will lead to higher programmer productivity, freeing users from

tuning their codes in specific ways that depend on knowledge of the underlying

implementation of indexing operations.

36

Chapter 2. Sparse Matrices in Star-P: Design and Implementation

2.6 Conclusion

The goal of sparse matrix support in Star-P is to provide an interactive

environment for users to perform operations on large sparse matrices in par-

allel, while being compatible with Matlab. Our current implementation is

complete, and has been used successfully for several problems. We also make

recommendations for a next generation parallel sparse library which uses sparse

matrix multiplication as its key primitive.

37

Chapter 3

Parallel Sparse Matrices and
Graph Algorithms

3.1 Motivation

High performance applications increasingly combine numerical and combina-

torial algorithms. Past research on high performance computation has focused

mainly on numerical algorithms, and we have a rich variety of tools for high

performance numerical computing. On the other hand, few tools exist for large

scale combinatorial computing.

Our goal is to make it easy for scientists and engineers to develop applica-

tions using modern numerical and combinatorial methods with as little effort as

possible. Sparse matrix computations allow structured representation of irreg-

ular data structures, decompositions, and irregular access patterns in parallel

applications.

38

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Sparse matrices are a convenient way to represent graphs. Since sparse

matrices are first class citizens in Matlab and many of its parallel dialects [32],

it is natural to use the duality between sparse matrices and graphs to develop

a unified infrastructure for numerical and combinatorial computing.

Several researchers are building a library of parallel graph algorithms: the

Parallel Boost Graph Library (PBGL) [65] at Indiana University, another one at

Georgia Tech [11], and the Multi-threaded Graph Library (MTGL) [49] at San-

dia National Laboratory. The PBGL builds upon the Boost graph library [111],

and uses MPI for parallelism. Both the Georgia Tech library and MTGL focus

heavily on thread-level parallelism.

Our approach relies upon representing graphs with sparse matrices. We use

the distributed sparse array infrastructure in Star-P to build an infrastructure

for computing with graphs. Parallelism is derived from operations on paral-

lel sparse matrices. This approach results in several desirable characteristics.

First, the implementation is completely written in a high-level language such as

Matlab making the codes are short, simple, and readable. Our implementa-

tion uses a single thread of control (SIMD), making it easier to write and debug

programs. The distributed sparse array implementation in Star-P provides a

set of well-tested primitives with which graph algorithms can be built. The effi-

39

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Sparse matrix operation Graph operation
G = sparse (U, V, W) Construct a graph from an edge list
[U, V, W] = find (G) Obtain the edge list from a graph
vtxdeg = sum (spones(G)) Node degrees for an undirected graph
indeg = sum (spones(G)) Indegrees for a directed graph
outdeg = sum (spones(G), 2) Outdegrees for a directed graph
N = G(i, :) Find all neighbors of node i
Gsub = G(subset, subset) Extract a subgraph of G
G(i, j) = W Add or modify graph edges
G(i, j) = 0 Delete a graph edges
G(I, I) = [] Remove nodes from a graph
G = G(perm, perm) Permute nodes of a graph
reach = G * start Breadth-first search step

Table 3.1: There exists a correspondence between sparse matrix operations
and graph operations. Many simple sparse matrix operations can be used to
directly perform basic operations on graphs.

ciency of our graph algorithms depends upon efficiency of the underlying sparse

matrix infrastructure.

The primitives described in the next section are used to implement several

graph algorithms in the “Graph Algorithms and Pattern Discovery” toolbox

(GAPDT) developed by Gilbert, Reinhardt and Shah [58, 101]. The toolbox was

designed from the outset to run interactively with terascale graphs via Star-P.

Many of the components provided scale to tens/hundreds of processors. High

performance and interactivity are salient features of this toolbox.

40

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

3.2 Sparse matrices and graphs

Every sparse matrix problem is a graph problem, and every graph problem

is a sparse matrix problem. We discuss some of the basic principles in the

design of a comprehensive infrastructure for sparse matrix data structures and

algorithms in chapter 2. The same principles apply to efficient operations on

large sparse graphs.

1. Storage for a sparse matrix should be Θ(max(n, nnz))

2. An operation on sparse matrices should take time approximately propor-

tional to the size of the data accessed and the number of nonzero arith-

metic operations on it.

A graph consists of a set of nodes V , connected by edges E. A graph can be

specified by tuples (u, v, w) indicating a directed edge of weight w from node u

to node v. This is the same as a nonzero w at location (u, v) in a sparse matrix.

Following principle 1, the storage required is Θ(|V |+ |E|). An undirected graph

is represented by a symmetric sparse matrix. A correspondence between sparse

matrix operations and graph operations is listed in Table 3.1. The basic design

principles silently come into play in all cases.

41

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

3.2.1 Sparse matrix multiplication

We argue in chapter 2 that sparse matrix multiplication can be a basic

building block for sparse matrix and graph based computations. There is a

correspondence between path problems on graphs and operations on sparse

matrices [4, 117]. Specifically, sparse matrix multiplication on semirings can be

used to implement a wide variety of graph algorithms.

Definition: A closed semiring is a system (S,⊕,⊗, 0, 1), where S is a set of

elements over which the binary operations of addition and multiplication are

defined. ⊕ denotes addition; ⊗ denotes multiplication. S has the following

properties:

1. (S,⊕, 0) is a commutative monoid with 0 as its identity element.

• ⊕ is associative: a⊕ (b⊕ c) = (a⊕ b)⊕ c.

• ⊕ is commutative: a⊕ b = b⊕ a.

• ⊕ has 0 as its identity element: a⊕ 0 = 0⊕ a = a.

2. (S,⊗, 1) is a monoid with 1 as its identity element.

• ⊗ is associative: a⊗ (b⊗ c) = (a⊗ b)⊗ c.

• ⊗ has 1 as its identity element: a⊗ 1 = 1⊗ a = a

3. ⊗ distributes over ⊕.

42

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

• Left distributivity: a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

• Right distributivity: (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

4. 0 is an annihilator for all elements in R.

• a⊗ 0 = 0⊗ a = 0.

It is straightforward to extend a given matrix multiplication code to allow

operations over arbitrary semirings. Modern object oriented languages include

facilities for operator overloading that allow + and × to be overloaded for a

given semiring. We extended Star-P’s sparse matrix multiplication to allow

multiplication over semirings.

Some algorithms that can be expressed in this framework are breadth-first

search, transitive closure [124], the Floyd-Warshall algorithm [50] for comput-

ing all pairs shortest paths, and Cohen’s algorithm [34] for estimating the fill

resulting from sparse matrix multiplication. Examples of semirings useful for

graph algorithms are as follows:

• (R, +,×, 0, 1) is the most commonly used semiring. It is the semiring used

by default.

• ({0, 1}, |, &, 0, 1) is a semiring using boolean operators. It is useful in

search algorithms such as breadth-first search.

43

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

• (R, MIN,⊗, +∞, 1) is an example of a semiring useful for contracting

nodes in a graph. ⊗ only allows multiplication with 1. In this specific

example, minimum weight edges are retained between contracted nodes

in the graph.

• The (R, ARGMIN,⊗, +∞, 1) semiring can be used instead, if an algo-

rithm requires edge information (such as the node contributing the edge)

rather than the weight of the edge.

• The (R, MIN,⊗, +∞, 1) semiring can also be used to implement Cohen’s

algorithm to predict the number of nonzeros in the rows or columns of the

result of sparse matrix multiplication.

• The (R, MIN, +, +∞, 0) semiring can be used to implement single source

shortest path algorithms such as Dijkstra’s algorithm, and all pairs short-

est path algorithms such as Floyd-Warshall.

3.3 Graph algorithms

We present a few commonly used operations on graphs in combinatorial

scientific computing. The list, though by no means comprehensive, includes

several graph algorithms: breadth-first search, connected components, strongly

44

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Figure 3.1: Breadth-first search on a graph is implemented with matrix vector
multiplication. Initialize a sparse vector with a 1 in the position corresponding
to the start node. Repeated multiplication yields multiple breadth-first steps
on the graph. Note that A can be either symmetric or unsymmetric. Image
reproduced with permission from John Gilbert.

connected components, maximal independent set, maximum weight spanning

tree, and graph contraction.

3.3.1 Breadth-first search

Consider breadth-first search (BFS). A BFS can be performed by multiply-

ing a sparse matrix G with a sparse vector x. Consider the simplest case of

performing a BFS starting from node i. In this case, we set x(i) = 1, all other

elements being zeros. y = G ∗ x simply picks out column i of G, which contains

the neighbors of node i. If this step is repeated, the multiplication will result

in a vector that is a linear combination of all columns of G corresponding to

the nonzero elements in vector x, or all nodes that are up to 2 hops away from

45

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

node i. Figure 3.1 shows the correspondence between breadth-first search on a

directed graph and matrix vector multiplication.

We can also perform several independent BFS searches simultaneously by

using sparse matrix matrix multiplication (described in chapter 2). Instead of

multiplying with a vector, we multiply with a matrix, with one nonzero in each

column at some row i, where i is the starting node. So, we have Y = G∗X, where

column j of Y contains the result of performing an independent BFS starting

from the node (or set of nodes) specified in column j of X. The resulting

time complexity for performing BFS with operations on sparse matrices is the

same as that obtained by performing operations on other efficient graph data

structures.

3.3.2 Connected Components

A connected component in an undirected graph is a maximal connected sub-

graph. Every node in the graph belongs to exactly one connected component.

We implement the Awerbuch-Shiloach [8] algorithm to find connected com-

ponents of a graph in parallel (code fragment 3.2). The algorithm is very similar

to the original Shiloach-Vishkin [110], but simpler. The algorithm is based on

combining trees of nodes, such that all nodes in a given tree belong to the same

connected component. The roots of the tree serve as labels for the trees. The

46

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function D = components (G)

02 % Connected components of a graph

03

04 D = 1:length(G); % Parent information

05 [u, v] = find(G);

06

07 while true

08 % Conditional hooking

09 Du = D(u); % Parents of nodes u

10 Dv = D(v); % Parents of nodes v

11

12 % Locate trees to be hooked.

13 hook = find (Du == D(Du) & Dv < Du);

14 Du = Du(hook);

15 Dv = Dv(hook);

16 D(Du) = Dv;

17

18 % Check for termination

19 if nnz(check stars(D)) == n; break; end

20

21 % Unconditional hooking

22 D = unconditional hooking (D, star, u, v);

23

24 % Pointer jumping

25 while D(D) ~= D; D = D(D); end

26 end

Figure 3.2: The Awerbuch-Shiloach connected components algorithm. The
algorithm works by grafting rooted trees onto other trees. The Star-P imple-
mentation manipulates only dense vectors.

47

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

algorithm returns a label for each node of the graph, corresponding to the root

of the tree it belongs to.

The trees are represented by a parent information vector. The parent of node

i is stored in D(i). The two basic operations used to find connected components

are hooking and shortcutting.

Two different types of hooking steps are used. Conditional hooking combines

two trees so that the larger numbered root is below the smaller. Unconditional

hooking only hooks trees that are not hooked by conditional hooking. This is

mainly to avoid worst case scenarios. Shortcutting (or pointer jumping) simply

flattens the trees so that all trees are of height 1. O(log n) iterations of hooking

and shortcutting are required to compute the connected components of a graph.

3.3.3 Maximal Independent Set

An independent set in a graph is a set of nodes, no two of which are adjacent.

A maximal independent set is an independent set that is not properly contained

in any independent set.

We use Luby’s randomized algorithm [87] to compute a maximal independent

set of a graph. The main body of our implementation is presented in code

fragment 3.3. The algorithm is one of the simplest and most elegant parallel

graph algorithms. It starts by selecting nodes in the graph with probability

48

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

inversely proportional to their degrees (lines 1–6). If neighboring nodes are

selected, it keeps those with higher degrees. These nodes are added to the

maximal independent set. The algorithm then iterates on the subgraph that

remains after removing the selected nodes and their neighbors (lines 20–22).

We briefly summarize Luby’s key result, which makes this algorithm work.

Let m1 be the number of edges in the graph before the loop iteration, m2 be

the number of edges after the loop iteration and m3 be the number of edges

eliminated. Then m1 = m2 + m3. The expected number of edges eliminated

in any iteration is strictly greater than m1/8. Clearly, the number of loop

iterations required is O(log n) with very high probability.

3.3.4 Maximum weight spanning trees

Given an undirected weighted graph G, a spanning tree contains a maximal

set of edges of G that contains no cycles. A maximum weight spanning tree has

the maximum weight of all possible spanning trees of G.

Theorem 3.3.1. [96] Let G(V, E) be an undirected weighted graph. Let U be

any subset of the nodes V of G. Then the maximum weight edge linking a node

in U to a node in V − U is in some maximum weight spanning tree of G.

Code fragment 3.4 describes the computation of the maximum weight span-

ning tree (MWST). Boruvka’s theorem (theorem 3.3.1) [96] says that every

49

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function IS = mis (G)

02 % Maximal independent set of a graph

03

04 IS = [];

05 while length(G) > 0

06 % Select vertices with probability 1/(2*degree)

07 degree = sum (G,2);

08 prob = 1 ./ (2 * degree);

09 select = rand (length(G), 1) <= prob;

10

11 % If neighbors selected, keep nodes with higher degree

12 neighbors = select & G * select;

13 some neighbors = ...textcolorcomment; % lower degree nodes

14 if ~isempty(neighbors); select(some neighbors) = 0; end

15

16 % Add selected nodes to independent set

17 IS = [IS find(select)];

18

19 % Exclude neighbors of selected vertices

20 remain = not (select | G * select);

21

22 % Iterate on the remaining subgraph

23 G = G (remain, remain);

24 end

Figure 3.3: Luby’s algorithm is used for a parallel implementation of maximal
independent sets. The algorithm proceeds by randomly selecting high degree
nodes belonging to the MIS with a high probability. Neighbors of the selected
nodes are ignored and the computation proceeds on the remaining subgraph.
Some lines in this code are omitted for simplicity.

50

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function G mst = mst (G)

02 % Maximum weight spanning tree of a graph

03

04 SN = 1:length(G);

05 while max(SN) > 1

06 % Contract graph into supernodes

07 [G SN E SN] = contract (G, SN, ’max’);

08 G SN = G SN - diag(diag(G SN)); % Ignore diagonal

09

10 % Pick max weight edges for each node from G SN

11 [ign, U] = max (G SN, [], 2);

12

13 % Pick edges {U mst, V mst} specified by E SN from G SN

14 T = sparse ([U mst; V mst], [V mst; U mst], 1, n, n);

15 G mst = G mst | T;

16

17 % Use pointer jumping to find supernodes

18 SN = components(G mst);

19 end

Figure 3.4: Parallel maximum weight spanning tree. Boruvka’s algorithm
picks the heavy edges incident on a node (or a supernode), which always belong
to the MWST. The selected edges define new supernodes based on connectiv-
ity, and the algorithm iterates on the contracted subgraph. This algorithm is
also referred to as Sollin’s algorithm. Some lines of this code are omitted for
simplicity.

51

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

maximum weight edge incident on a node belongs to the MWST, assuming all

edge weights are unique. As a result, at least N/2 edges of the MWST are se-

lected in an iteration (line 10). There may be up to N/2 connected components

(supernodes) after the first iteration, since the graph of the spanning tree may

not necessarily be connected. These connected components are determined effi-

ciently by pointer jumping (line 20). The algorithm then proceeds recursively on

the contracted subgraph, requiring O(log N) iterations to construct the MWST.

3.3.5 Strongly connected components

A strongly connected component of a directed graph is a maximal subset

of nodes containing a directed path from every node to all other nodes in the

subset. We implement the Divide and Conquer Strongly Connected Compo-

nents (DCSC) algorithm proposed by Fleischer, Hendrickson and Pinar [49] to

compute the strongly connected components of an undirected graph.

A node v is reachable from a node u if there is a sequence of directed edges

from u to v. Desc(G, v), the descendants of v, is the set of subset of nodes

in G which are reachable from v. Similarly, Pred(G, v), the predecessors of

v, is the subset of nodes from which v is reachable. The descendants of v

are found by finding the predecessors of v in the transpose of the input graph

52

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function x = predecessor (G, v)

02 % Predecessors of a node in a graph

03

04 x = sparse (length(G), 1);

05 xold = x;

06 x(v) = 1; % Start BFS from v.

07

08 while x ~= xold

09 xold = x;

10 x = x | G * x; % Use matvec to find neighbors.

11 end

Figure 3.5: Predecessor computation can be achieved simply by breadth-first
search (matrix vector multiplication). Descendants can then be computed as
descendants in GT — the graph obtained by reversing the direction of the edges
in G

(code fragment 3.5). A strongly connected component in G containing node v

is denoted as SCC(G, v).

Theorem 3.3.2. [49] Let G = (V, E) be a directed graph, with v ∈ V a node in

G. Then

Desc(G, v) ∩ Pred(G, v) = SCC(G, v)

Theorem 3.3.3. [49] Let G be a graph with node v. Every strongly connected

component of G is a subset of Desc(G, v), a subset of Pred(G, v) or a subset of

Rem(G, v).

53

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function scomponents (G, map)

02 % Strongly connected components of a graph

03

04 global label, count;

05

06 if isempty(G); return; end % Recursion termination

07 v = 1 + fix(rand * n); % Select a random pivot

08 pred = predecessor (G, v); % Predecessors

09 desc = predecessor (G’, v); % Descendants

10

11 % Intersection of predecessors and descendants is a SCC.

12 scc = pred & desc;

13 count = count + 1;

14 label(map(find(scc))) = count;

15

16 % Iterate over subgraph of predecessors

17 remain = find (xor (pred, scc));

18 scomponents (G(remain, remain), map(remain));

19

20 % Iterate over subgraph of descendants

21 remain = find (xor (desc, scc));

22 scomponents (G(remain, remain), map(remain));

23

24 % Iterate over remaining subgraph

25 remain = find (not (pred | desc));

26 scomponents (G(remain, remain), map(remain));

Figure 3.6: The Fleischer-Hendrickson-Pinar algorithm is used to compute
the strongly connected components of a graph. Parallelism in this algorithm is
achieved from matrix vector multiplication. It may also be achieved through
divide-and-conquer. We extract parallelism by data parallel operations on large
graphs. The computation can switch to sequential computation when the sub-
problems are small enough.

54

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

The algorithm to find strongly connected components of a graph (code frag-

ment 3.6) follows from theorem 3.3.2. First, select a random pivot node v (line

6). The intersection of its predecessors and descendants is a strongly connected

component of G (lines 13–15). Theorem 3.3.3 implies that the remaining nodes

of G are divided into three sets: Desc(G, v), Pred(G, v), and Rem(G, v). Any

additional strongly connected component must be entirely contained within one

of these three sets. This leads to a divide and conquer formulation. An efficient

implementation can use divide and conquer until the subproblems are small

enough for sequential algorithms.

3.3.6 Graph contraction

Graph contraction is a common graph operation. Several graph algorithms

proceed by solving the problem iteratively on smaller subgraphs. Often, nodes

in a graph are renumbered during a computation. Graph contraction involves

combining nodes in the graph, and edges incident on those nodes as well. As

shown in code fragment 3.7, graph contraction is implemented with sparse ma-

trix multiplication over semirings (lines 12–13). Any operation supported for

the ⊕ operation on semirings can be used to combine edge weights during graph

contraction. argmin and argmax are also supported as contraction operators.

As a result, in cases when the min or max weight edge is selected, the routine

55

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function [C, ARG] = contract (G, labels, op)

02 % Contract nodes of a graph

03

04 n = length (G);

05 m = max(labels);

06 S = sparse (labels, 1:n, 1, m, n);

07

08 if strcmp (op, ’plus’)

09 % C = S * G * S’;

10 [I J V] = find (G);

11 C = sparse (labels(I), labels(J), V, m, m);

12 else

13 C1 = mtimes semiring (S, G, op, ’mult’);

14 [C, ARG] = mtimes semiring (C1, S’, op, ’mult’);

15 end

Figure 3.7: Parallel graph contraction. Graph contraction can be performed
with sparse matrix multiplication. It can also be implemented by using sparse,
since sparse accumulates duplicate edges.

can also return the node upon which the edge is incident in the uncontracted

graph.

3.4 Graph generators

We provide a few graph generators in our toolbox, since algorithm developers

may not always have access to the graphs they are developing their algorithms

for. We provide two random graph generators: an Erdős-Rényi generator [46],

and the Recursive Matrix (R-MAT) generator [85]. Grid generators for grids

arising from numerical solutions to PDEs are also included. All these graph

56

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Matrix nr = 10000, nc = 10000, nnz = 49991
Bucket nnz: max = 27, min = 2, avg = 12.2048, total = 49991, max/avg = 2.2

10 20 30 40 50 60

10

20

30

40

50

60

0

6.75

13.5

20.25

27

Matrix nr = 10000, nc = 10000, nnz = 99965
Bucket nnz: max = 40, min = 10, avg = 24.4055, total = 99965, max/avg = 1.6

10 20 30 40 50 60

10

20

30

40

50

60

0

10

20

30

40

Figure 3.8: Density spy plots of random graphs. The image on the left is of a
directed graph; the right image corresponds to a symmetric version of the same
graph. The density scales are different on the two spy plots.

generators are fast and scalable, taking a parameter for scale as input. We

have generated graphs with hundreds of millions of nodes using these graph

generators.

3.4.1 Random graphs

In the Erdős-Rényi random graph model [46], each edge in the graph is

picked independently with some fixed probability p. The Matlab routines

sprand and sprandn produce random sparse matrices with a specified density.

These routines are included with Star-P, and they produce distributed Erdős-

Rényi random graphs.

The sprand and sprandn functions provide a quick way to generate random

graphs to test graph algorithms during the design and testing phase. The ma-

57

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Matrix nr = 1024, nc = 1024, nnz = 6671
Bucket nnz: max = 113, min = 0, avg = 1.62866, total = 6671, max/avg = 69

10 20 30 40 50 60

10

20

30

40

50

60

0

28.25

56.5

84.75

113

Matrix nr = 1024, nc = 1024, nnz = 6636
Bucket nnz: max = 12, min = 0, avg = 1.62012, total = 6636, max/avg = 7.4

10 20 30 40 50 60

10

20

30

40

50

60

0

3

6

9

12

Figure 3.9: Density spy plots of a graph generated with the recursive matrix
generator (R-MAT). The image on the left shows the recursive structure of the
R-MAT graph. The image on the right shows the same graph with a randomized
labeling of the nodes.

trices they generate are unsymmetric, resulting in directed graphs. Undirected

graphs can be achieved by making the matrix symmetric by adding the matrix

to its transpose.

3.4.2 Recursive matrix generator

R-MAT is another random graph model. It is defined by four parameters: a,

b, c, and d, which sum to one. The adjacency matrix is recursively subdivided

into four equal-sized partitions. Placing a nonzero in one of these partitions in

the matrix corresponds to adding an edge in the graph. Edges are placed within

these partitions with unequal probabilities. The algorithm generates the data

tuples with a high degree of locality.

58

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

0 20 40 60 80 100 120 140
0

50

100

150

200

250

vertex degree

fr
eq

ue
nc

y

10
0

10
1

10
2

10
0

10
1

10
2

frequency

ve
rt

ex
 d

eg
re

e

0 2 4 6 8 10 12

x 10
8

10
1

10
2

10
3

10
4

Number of nodes in power law graph

T
im

e
in

 s
ec

on
ds

Performance of R−MAT with 240 processors

Figure 3.10: The degree distribution of nodes in the R-MAT graph are shown
on the left. The right image shows the scaling of the R-MAT generator in
Star-Pto large problems with 240 processors on a shared memory SGI Altix.

Kepner [10] provides a vectorized sequential Matlab implementation of

R-MAT as part of the SSCA#2 reference implementation. The code runs effi-

ciently in Star-P without modification. The default parameters produce power

law graphs, which are sparse, scale-free, and tend to be good models of many

real life networks. We adopt this code as the data generator for power law

graphs in our toolbox.

Figure 3.10 shows a density spy plot of an R-MAT graph. The recursive

structure is very clearly visible in the non-randomized plot. Locality and struc-

ture are destroyed when the nodes are relabeled randomly. Figure 3.10 shows

the degree distribution of the generated power law graphs. The performance

plot shows that the R-MAT generator scales well, all the way to a billion nodes1.

1These experiments were performed using 240 processors of a 256 processor SGI Altix

59

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function A = blockdiags(B, d, m, n)

02 % Sparse matrix formed from block diagonals

03

04 p = ncols (B) / length (d);

05 A = sparse (m*p, n*p);

06

07 for i=1:length(d)

08 S = spdiags (ones(m,1), d(i), m, n);

09 block = B(:, [(i-1)*p+1:i*p]);

10 A = A + kron (S, block);

11 end

Figure 3.11: blockdiags is a generalization of the Matlab spdiags call.
It allows the user to construct a block diagonal matrix, where the blocks may
themselves be sparse. The Star-P implementation uses kron for speed.

3.4.3 Regular 2D and 3D grids

The GAPDT toolbox includes graph generators for 2D and 3D grids from

the Meshpart toolbox [60], which correspond to the discretization of Laplace’s

equation on regular geometries. For example, we provide grid5 (figure 3.13),

grid7 and grid9, which generate 5-point, 7-point and 9-point finite difference

meshes on the unit square. gridt generates a finite difference mesh on an

equilateral triangle, grid3d (figure 3.14) generates a 3D 7-point finite difference

mesh, and grid3dt produces a 3D tetrahedral finite element mesh.

The grid generators use a generalization of the Matlab spdiags routine —

blockdiags (code fragment 3.11). spdiags constructs a sparse matrix with

a specified diagonal structure. blockdiags generalizes this to construct a

60

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function G = grid3d (k)

02 % Generate a 3-dimensional 7-point finite difference mesh

03

04 % Diagonals +1/-1

05 a = blockdiags ([-1 6 -1], -1:1, k, k);

06

07 % Diagonals +k/-k

08 I = speye (k, k);

09 aa = blockdiags ([-I a -I], -1:1, k, k);

10

11 % Diagonals +k^2/-k^2

12 II = speye(k^2,k^2);

13 G = blockdiags ([-II aa -II], -1:1, k, k);

Figure 3.12: Generate a grid for the 3D model problem. This illustrates the
use of the blockdiags syntax to construct regular grids. The grid3d code is
adapted from the Meshpart toolbox [60].

sparse matrix with a specified block-diagonal structure. The Star-P version of

blockdiags uses kron (Kronecker product) to generate a block diagonal ma-

trix. Interestingly, parallel sparse kron is identical to sequential sparse kron,

simply using dense matrix indexing and sparse. Once blockdiags is available,

other grid generators are easily implemented. For example, code fragment 3.12

shows the construction of a regular 3D 7-point finite difference mesh.

3.5 Graph partitioning

The GAPDT toolbox includes a geometric partitioner [55] and a spectral

partitioner [29]. The codes originate from the Meshpart toolbox [60]. Graph

61

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Matrix nr = 100, nc = 100, nnz = 460
Bucket nnz: max = 4, min = 0, avg = 0.112305, total = 460, max/avg = 36

10 20 30 40 50 60

10

20

30

40

50

60

0

1

2

3

4

Figure 3.13: The model problem in 2D. The image to the left shows the graph;
the image to the right shows a density spy plot of the graph.

Matrix nr = 125, nc = 125, nnz = 725
Bucket nnz: max = 4, min = 0, avg = 0.177002, total = 725, max/avg = 23

10 20 30 40 50 60

10

20

30

40

50

60

0

1

2

3

4

Figure 3.14: The model problem in 3D. The image to the left shows the graph;
the image to the right shows a density spy plot of the graph.

62

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

12 cut edges 31 cut edges

Figure 3.15: Geometric mesh partitioning works well on meshes arising from
finite element discretizations. Geometric separators for the 2D and 3D model
problems are shown.

partitioning is useful in a variety of applications such as solution of large sparse

linear systems, VLSI circuit layout, and load balancing for parallel and dis-

tributed computing.

3.5.1 Geometric mesh partitioning

Graphs from large scale scientific problems are often defined geometrically.

This method implements a geometric mesh partitioner based on the work of

Miller, Teng, Thurston and Vavasis [94]. The method partitions a d-dimensional

mesh by finding a suitable sphere in d-space, and dividing the nodes into those

interior and exterior to the sphere. The cutting sphere is found by a randomized

63

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

algorithm that involves a conformal mapping of the points on the surface of a

sphere in d + 1 space. Gilbert, Miller and Teng [55] report that their Mat-

lab implementation produces partitions that are better than the theoretical

guarantees and competitive with those produced by other methods.

The algorithm parallelizes naturally. The original Matlab code from Mesh-

part works with just one small modification in Star-P to allow it to perform

computations on small matrices on the frontend. The geometric mesh parti-

tioner can partition regular grids with millions of nodes in parallel in a few

minutes. For example, a 3D grid on the unit cube (figure 3.15) with 64 million

nodes can be partitioned in 12 minutes with 14 processors on a shared memory

Opteron system.

3.5.2 Spectral partitioning

Spectral partitioning originates from the ideas of Fiedler [48]. Pothen, Si-

mon, and Liou suggested its application to graph partitioning in numerical

computation [100]. Consider a graph G with n nodes. Let L be the Laplacian

matrix of G. It is constructed by making all off-diagonal elements negative. The

diagonal is then adjusted so that row sums are zero. A cut vector x is defined

as a vector containing only +1 and -1 as its entries, where the sign determines

which partition a node is in. The cut size, then, is four times xT Lx. Therefore,

64

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

the optimal graph bisection solves a discrete optimization problem:

min
x

xT Lx

xi = ±1

∑
i

xi = 0

Spectral bisection solves the continuous relaxation of this problem, rounding

the continuous solution to a nearby discrete solution. It minimizes the Rayleigh

quotient xT Lx/xT x over all vectors x orthogonal to the vector of all ones. The

vector of all ones is an eigenvector corresponding to zero, the smallest eigenvalue

of L.

min
x

xT Lx

||x|| = 1

∑
i

xi = 0

The vector x that solves this optimization problem is the so-called Fiedler vector

of L, the eigenvector corresponding to the smallest non-zero eigenvalue. Nodes

are partitioned around the median entry in the Fiedler vector.

Spectral partitioning in Star-P (code fragment 3.16) uses the eigs function

to obtain the Fiedler vector [48] of the graph Laplacian. Since an interior

eigenvalue is desired, a shift-and-invert method must be used, requiring the

65

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

01 function [p1, p2] = specpart (G)

02 % Spectral graph partitioning

03

04 % The Fiedler vector corresponds to the smallest

05 % non zero eigenvalue of the graph Laplacian

06 L = laplacian (G);

07 [V, D] = eigs (L, 2, ’SM’);

08 fiedler = V(:, 1);

09

10 % Partition around the median of the Fiedler vector

11 m = median (fiedler);

12 p1 = find (fiedler < m);

13 p2 = find (fiedler >= m);

Figure 3.16: Spectral partitioning uses the Fiedler vector of the graph Lapla-
cian to partition the graph. The Fiedler vector is the eigenvector corresponding
to the smallest non zero eigenvalue of the graph Laplacian.

solution of a sparse linear system. This approach may be unsuitable for very

large graphs.

3.6 Conclusion

We show the duality between sparse matrix algorithms and graph algo-

rithms. This correspondence allows graph algorithms to be implemented as

sparse matrix algorithms. We describe implementations of several parallel graph

algorithms using the sparse matrix infrastructure in Star-P. Our implementa-

tion is packaged as the “Graph Algorithms and Pattern Discovery Toolbox” for

66

Chapter 3. Parallel Sparse Matrices and Graph Algorithms

Matlab and Star-P. It provides a general infrastructure for users to develop

their own highly scalable graph algorithms with relative ease.

67

Chapter 4

Parallel Sorting

4.1 Introduction

Traditionally, the field of scientific computing has been dominated by nu-

merical methods. However, modern scientific codes often combine numerical

methods with combinatorial methods. Sorting, a widely studied problem in

computer science, is an important primitive for combinatorial scientific comput-

ing. As high performance computers become more affordable due to multi-core

CPUs and commodity clustering, more and more scientific codes are written

for parallel computers. Scientific programming environments such as Matlab

and Star-P provide sorting as a built-in function. Parallel sorting can also

form a basic building block to implement higher level combinatorial algorithms

and computations with irregular communication patterns and workloads, such

as parallel sparse matrix computations described in chapters 2 and 3.

68

Chapter 4. Parallel Sorting

We describe the design and implementation of an algorithm for parallel

sorting on contemporary architectures. Distributed memory architectures are

widely in use today. The cost of communication is several orders of magnitude

larger than the cost of computation on such architectures. Often, it is not

enough to tune existing algorithms. Newer architectures demand a fresh look

at the problems being solved and new algorithms to yield good performance. We

propose a parallel sorting algorithm that moves a minimal amount of data over

the network. Our algorithm is close to optimal in both the computation and the

communication required. It moves less data than sample sorting algorithms, and

is computationally efficient on distributed and shared memory architectures.

Blelloch et al. [20] compare several parallel sorting algorithms on the Con-

nection Machine 2. They report that a sampling based sort and a radix sort

are good algorithms to use in practice. We first tried a sampling based sort in

which a number of sampled “splitter” elements are used to divide the input into

buckets. The cost of sampling is often quite high, and sample sort requires a

final redistribution phase so that the output has the desired distribution. The

sampling process itself requires well chosen parameters to yield good samples.

We noticed that we can do away with both these steps if exact splitters are

found. Saukas and Song [105] describe a parallel selection algorithm. Our al-

69

Chapter 4. Parallel Sorting

gorithm extends this work to efficiently find p − 1 exact splitters in O(log n)

rounds of communication.

Our goal was to design a scalable, portable, and high performance sorting

code that would form a building block for higher level combinatorial algorithms.

We built our code using standards based library software such as the C++ Stan-

dard Template Library (STL) [98] and MPI [44]. Our code is highly modular,

which lets the user replace any stage of the algorithm with platform or applica-

tion specific routines for higher performance.

4.2 Algorithm Description

We have p processors to sort n total elements in a vector v. Assume that

the input elements are already load balanced, or evenly distributed over the

p processors; this is not a requirement but makes the description and analysis

simpler. We number the processors 1 . . . p, and define vi to be the set of elements

held locally by processor i. The distribution of v is a vector d where di = |vi|.

We say v is evenly distributedif it is formed by the concatenation v = v1 . . . vp,

and di ≤ dn
p
e for all i.

70

Chapter 4. Parallel Sorting

Algorithm.
Input: A vector v of n total elements, evenly distributed
among p processors.
Output: An evenly distributed vector w with the same
distribution as v, containing the elements of v in sorted
order.

1. Locally sort the local elements vi into a vector v′i.

2. Determine the exact splitting of the local data:

(a) Compute the partial sums and rj =
∑j

k=0 dk for
j = 0 . . . p.

(b) Use a parallel select algorithm to find the elements
e1, . . . , ep−1 of global rank r1, . . . , rp−1, respectively.

(c) For each rj, have processor i compute the local index
sij so that rj =

∑p
i=1 sij and the first sij elements of

v′i are no larger than ej.

3. Route the sorted elements in v′i according to the indices
sij: processor i sends elements in the range sij−1 . . . sij to
processor j.

4. Locally merge the p sorted sub-vectors into the output
wi.

Figure 4.1: Parallel sorting with exact splitters

We describe our algorithm in figure 4.1. We assume the task is to sort the

input into increasing order. Of course, any other comparison function may be

used.

71

Chapter 4. Parallel Sorting

4.2.1 Local sort

The first step may use any local sort applicable to the problem at hand.

It is beyond the scope of this study to devise an efficient sequential sorting

algorithm, as this problem is very well studied. Define the computation cost

for the local sort on an input of size n to be Ts(n). Therefore, the amount

of computation done by processor i in this step is just Ts(di). Since the local

sorting must be completed on each processor before the next step can proceed,

the global cost of the step is maxi Ts(di) = Ts(dn
p
e). For a comparison based

sort, this is O(n
p

log n
p
).

4.2.2 Exact splitting

This step is nontrivial, and the main result of this chapter follows from

the observation that exact global splitting over locally sorted data can be done

efficiently.

The method we use for simultaneous selection is a generalization of the single

selection by Saukas and Song [105], with two main differences: local ranking is

done by binary search rather than partitioning, and we perform O(log n) rounds

of communication rather than terminating the selection process earlier. For

completeness, we describe the single selection algorithm next.

72

Chapter 4. Parallel Sorting

Single selection

First, we consider the simpler problem of selecting just one target, an element

of global rank r. The algorithm for this task is motivated by the sequential

methods for the same problem, most notably the one given in [21].

Although it is simpler to define the selection algorithm recursively, the prac-

tical implementation and extension into simultaneous selection proceed more

naturally from an iterative description. Define an active range to be the con-

tiguous sequence of elements in v′i that may still have rank r, and let ai represent

its size. Note that the total number of active elements is
∑p

i=1 ai. Initially, the

active range on each processor is its entire vector v′i and ai is just the input dis-

tribution di. In each iteration of the algorithm, a pivot is found that partitions

the active range in two. Either the pivot is determined to be the target ele-

ment, or the next iteration continues on one of the partitions. Every processor

i follows the steps in figure 4.2

We can think of the weighted median of medians as a pivot, because it is

used to split the input for the next iteration. It is well known that the weighted

median of medians can be computed in linear time [37, 102]. One possible way

is to partition the values with the unweighted median, accumulate the weights

on each side of the median, and recurse on the side that has too much weight.

73

Chapter 4. Parallel Sorting

Algorithm.
Input: Active range v′i on each processor.
Output: Weighted median of medians mm.

1. Let mi be the median element of the active range of v′i.
Broadcast it to all processors.

2. Weigh median mi by ai/
∑p

k=1 ak. Find the weighted median
of medians mm. By definition, the weights of
{mi|mi < mm} sum to at most 1

2, as do the weights of
{mi|mi > mm}.

3. Use binary search over the active range of v′i to determine
the first and last positions fi and li that mm could be
inserted into the sorted vector v′i. Broadcast these two
values.

4. Compute f =
∑p

i=1 fi and l =
∑p

i=1 li. The element mm has
ranks [f, l] in v.

5. If r ∈ [f, l], then mm is the target element and we exit.
Otherwise the active range is truncated with the
following rule: Increase the bottom index to li + 1 if
l < r; or decrease the top index to fi − 1 if r < f. Repeat
with truncated active range.

Figure 4.2: Parallel selection for the kth element

74

Chapter 4. Parallel Sorting

Therefore, the amount of computation in each round is O(p)+O(log ai)+O(1) =

O(p + log n
p
) per processor.

Furthermore, splitting the data by the weighted median of medians will

eliminate at least 1
4

of the elements [105]. Since the step begins with n elements

under consideration, there are O(log n) iterations. The total single processor

computation for selection is then O(p log n + log n
p

log n) = O(p log n + log2 n).

The amount of communication is straightforward to compute: two broad-

casts per iteration, for O(p log n) total bytes being transferred in O(log n) rounds.

Simultaneous selection

The problem is now to select multiple targets, each with a different global

rank. In the context of the sorting problem, we want the p−1 elements of global

rank d1, d1 + d2, . . . ,
∑p−1

i=1 di. One simple way to do this would call the single

selection problem for each desired rank. Unfortunately, doing so would increase

the number of communication rounds by a factor of O(p). We can avoid this

inflation by solving multiple selection problems independently, but combining

their communication. Stated another way, instead of finding p − 1 paths one

after another from root to leaf of the binary search tree, we take a breadth-first

search with breadth at most p− 1 (see figure 4.3).

75

Chapter 4. Parallel Sorting

1

2

3

4

5

Iteration
[1 2 3|]

[1 2|]

[1|2]

[1] [|2]

[3|]

[|3]

[3|]

Figure 4.3: An example of selecting three elements. Each node corresponds to
a contiguous range of v′i, and gets split into its two children by the pivot. The
root is the entire v′i, and the bold edges trace which ranges are active at each
iteration. The array at a node represents the target ranks that may be found by
the search path, and the vertical bar in the array indicates the relative position
of the pivot’s rank.

To implement simultaneous selection, we augment the single selection algo-

rithm with a set A of active ranges. Each of these active ranges will produce

at least one target. An iteration of the algorithm proceeds as in single selec-

tion, but finds multiple pivots: a weighted median of medians for each active

range. If an active range produces a pivot that is one of the target elements,

we eliminate that active range from A (as in the leftmost branch of figure 4.3).

Otherwise, we examine each of the two partitions induced by the pivot, and add

it to A if it may yield a target. Note that, as in iterations 1 and 3 in figure 4.3,

it is possible for both partitions to be added.

In slightly more detail, we handle the augmentation by looping over A in

each step. The local medians are bundled together for a single broadcast at the

end of Step 1, as are the local ranks in Step 3. For Step 5, we use the fact

76

Chapter 4. Parallel Sorting

that each active range in A has a corresponding set of the target ranks: those

targets that lie between the bottom and top indices of the active range. If we

keep the subset of target ranks sorted, a binary search over it with the pivot

rank1 will split the target set as well. The left target subset is associated with

the left partition of the active range, and the right sides follow similarly. The

left or right partition of the active range is added to A for the next iteration

only if the corresponding target subset is non-empty.

The computation volume for simultaneous selection follows by inflating each

step of the single selection by a factor of p (because |A| ≤ p). The exception is

the last step, where we also need to search over O(p) targets. This amounts to

O(p+ p2 + p log n
p
+ p+ p log p) = O(p2 + p log n

p
) per iteration. Again, there are

O(log n) iterations, for total computation time of O(p2 log n + p log2 n).

This step runs in O(p) space, the scratch area needed to hold received data

and pass state between iterations.

The communication time is similarly inflated: two broadcasts per round,

each having one processor send O(p) data to all the others. The aggregate

amount of data being sent is O(p2 log n) over O(log n) rounds.

1Actually, we search for the first position f may be inserted, and for the last position l
may be inserted. If the two positions are not the same, we have found at least one target.

77

Chapter 4. Parallel Sorting

Producing indices

Each processor computes a local matrix S = Sij of size p × (p + 1). Recall

that S splits the local data v′i into p segments, with sk0 = 0 and skp = dk for

k = 1 . . . p. The remaining p − 1 columns are the result of the selection. For

simplicity of notation, we briefly describe the output procedure in the context

of single selection; it extends naturally for simultaneous selection. When we

find that a particular mm has global ranks [f, l) 3 rk, we also have the local

ranks fi and li. There are rk− f excess elements with value mm that should be

routed to processor k. We assign ski from i = 1 to p, taking as many elements

as possible without overstepping the excess, which guarantees that our sort is

stable (i.e. it preserves the ordering of equal elements). More precisely,

ski = min

{
fi + (rk − f)−

i−1∑
j=1

(skj − fj), li

}

.

The computation requirement for this step is O(p2) to populate the matrix

S; the space used is also O(p2).

4.2.3 Element routing

Any parallel sorting algorithm must move elements from the locations they

start out to where they belong in sorted order. An optimal parallel sorting

78

Chapter 4. Parallel Sorting

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4

Height

Figure 4.4: An example of tree merging when the number of processors is not
a power of 2.

algorithm will communicate every element from its current location to a location

in remote memory at most once. Our algorithm is optimal in this sense, not

counting the O(p2 log n) data movement during selection, which is of much lower

order than n for realistic values of n and p. For instance, if the input is already

sorted, no data movement occurs. However, if the input is in reverse sorted

order, all elements need to be communicated to their destinations. Then the

amount of data communicated in the element routing step is Θ(n).

4.2.4 Merging

Now each processor has p sorted sub-vectors, and we want to merge them

into a single sorted sequence. Conceptually, we build a binary tree on top of the

vectors. To handle the case where p is not a power of 2, we require that a node

of height i has at most 2i leaf descendants, whose ranks are in [k · 2i, (k +1) · 2i)

for some k (figure 4.4). It is clear that the tree has height at most dlog pe.

79

Chapter 4. Parallel Sorting

For reasons of cache efficiency, we merge pairs of sub-vectors out-of-place

from this tree. Cache oblivious algorithms [24, 52] may yield better performance

across a variety of architectures.

Notice that a merge will move a particular element exactly once (from one

buffer to its sorted position in the other buffer). Furthermore, there is at most

one comparison for each element move. Finally, every time an element is moved,

it goes into a sorted sub-vector at a higher level in the tree. Therefore each

element moves at most dlog pe times, for a total computation time of didlog pe.

Again, we take the time of the slowest processor, for overall parallel computation

time of dn
p
edlog pe.

4.3 Theoretical performance

Suppose the sequential sorting algorithm used locally on each processor takes

time Ts(n). We define T ∗
s (n, p) = 1

p
Ts(n), which would be the ideal running time

of our parallel algorithm with perfect speedup. Adding up the time complexity

of each step of our parallel algorithm gives its total computation time:

T ∗
s (n, p) + O(p2 log n + p log2 n) + (dn

p
e if p not a power of 2) (4.1)

The total space used in addition to the input, is O(p2 + n
p
).

80

Chapter 4. Parallel Sorting

We compare this algorithm against an ideal parallel sorting algorithm with

the following properties:

1. Total computation time T ∗
s (n, p) = 1

p
Ts(n). Linear speedup in p over a

sequential sorting algorithm with running time Ts(n).

2. Minimum amount of cross-processor communication T ∗
c (v), the number of

elements that begin and end on different processors.

If Ts(n) is optimal, then so is T ∗
s (n, p). If there were a faster T ′

s(n, p) for

some p, then we could simulate it on a single processor for total time pT ′
s(n, p) <

pT ∗
s (n, p) = Ts(n), which is a contradiction.

4.3.1 Analysis of computation time

We can determine the total computation time by adding up the time for

each step, and comparing against the theoretical T ∗
s (n, p):

Ts(dn
p
e) + O(p2 log n + p log2 n) + dn

p
edlog pe

≤ 1

p
Ts(n + p) + O(p2 log n + p log2 n) + dn

p
edlog pe

= T ∗
s (n + p, p) + O(p2 log n + p log2 n) + dn

p
edlog pe

The inequality follows from the fact that T ∗
s (n) = Ω(n).

It is interesting to consider the case where the local sort is comparison based.

Then the sequential sort has Ts(n) ≤ cdn
p
e logdn

p
e for some c ≥ 1. We can then

81

Chapter 4. Parallel Sorting

add this cost to the time required for merging (Step 4):

cdn
p
e logdn

p
e+ dn

p
edlog pe

≤ cdn
p
e log(n + p) + dn

p
e(dlog pe − c log p)

≤ cdn
p
e log n + cdn

p
e log(1 + p

n
) + dn

p
e(dlog pe − c log p)

≤ cn log n

p
+ log n + 2c + (dn

p
e if p not a power of 2)

With comparison sorting, the total computation time becomes:

T ∗
s (n, p) + O(p2 log n + p log2 n) + (dn

p
e if p not a power of 2) (4.2)

4.3.2 Analysis of communication volume

We have already established that the exact splitting algorithm will provide

the final locations of the elements. The amount of communication done in the

routing phase is then the optimal amount. Therefore, total communication

volume is:

T ∗
c (v) in 1 round + O(p2 log n) in log n rounds

4.3.3 Realistic assumptions

These bounds imply that our algorithm is only efficient for p2 ≤ n/p which

implies that p3 ≤ n. This requirement is common to other parallel sorting

82

Chapter 4. Parallel Sorting

algorithms, such as sampling based sorting algorithms [62]. It is a realistic

assumption for the case when the amount of data to be sorted is a significant

fraction of the total memory on all processors, and a single processor has more

than p2 memory.

4.4 Experimental results

The communication cost of our sorting algorithm is nearly optimal if p is

small. Furthermore, the computation speedup is nearly linear if p� n. Notice

that the speedup is given with respect to a sequential algorithm, rather than to

itself with small p. Our intent is that efficient sequential sorting algorithms and

implementations can be developed without any consideration for parallelization,

and then be substituted in our implementation for good parallel performance.

We now turn to empirical results, which suggest that exact splitting uses

little computation and communication time.

4.4.1 Experimental setup

We implemented our parallel sorting algorithm in C++ using the Message

Passing Interface (MPI) [44] for communication. We intend our code to be used

83

Chapter 4. Parallel Sorting

as a library with a simple interface; it is therefore templated, and comparison

based.

We use std::sort and std::stable sort from the C++ Standard Tem-

plate Library (STL) library for sequential sorting.The C++ STL has one of the

fastest general purpose sorting routines available [98].

We use MPI for communication. MPI is the most portable and widely

used method for communication in parallel computing. Since vendor optimized

MPI implementations are available on most platforms, we expect reasonable

performance on distributed as well as shared memory architectures. We use the

MPI libraries provided by the SGI MPT [106] on the Altix, and OpenMPI [54]

on clusters.

Our choice of the C++ STL sequential sorting routines and MPI allows our

code to be robust, scalable and portable without sacrificing performance. We

tested our implementation on an SGI Altix and a commodity cluster. The SGI

Altix had 256 Itanium 2 processors and 4TB of RAM in a single system image.

The Beowulf cluster had 32 Xeon processors and 3 GB of memory per node

connected via gigabit ethernet.

We ran every test instance twice, timing only the second invocation. As a

result, setup time such as page table initializations etc. are not counted in our

timings.

84

Chapter 4. Parallel Sorting

Figure 4.5: Scalability tests are performed for a fixed problem size, while
changing the number of processors. Good scaling is observed on shared memory
architectures (left) as well as on clusters (right).

Figure 4.6: Scalability tests are performed for a fixed problem size while chang-
ing the number of processors. Good scaling is observed on large problems on
shared memory architectures (left) as well as on clusters (right).

85

Chapter 4. Parallel Sorting

Figure 4.5 shows the scaling of our algorithm as the same number of elements

are sorted on different numbers of processors. We do not provide comparisons

to sequential performance because the datasets do not fit on a single processor.

The largest problem we solved is to sort 100 billion elements with 254 processors,

which took less than 4 minutes.

Figure 4.6 shows the scaling of our algorithm with the problem size, the

number of processors being fixed. In all the cases, we observe good scaling on

large problem sizes on a shared memory Altix as well as on a cluster.

For clusters, we also present sequential speedup in figure 4.7. We do not

observe good scaling on small problems. As the problems get larger, we observe

better scaling, as expected. For the largest problem size (1 billion), it is not

possible to run the code on small numbers of processors. We extrapolate the

performance for small numbers of processors, and present actual performance

for 16 processors and higher.

We also experimented with cache oblivious strategies. We tried using funnel

sort [25] for sequential sorting, but found it to be slower than the STL sort-

ing algorithms. On the other hand, a cache oblivious funnel merge did yield

slightly better performance than the out-of-place tree merge we use in our code.

We compare the performance of the two merging algorithms on the Altix in

figure 4.8.

86

Chapter 4. Parallel Sorting

Figure 4.7: The 45 degree line represents perfect scaling. As the problem size
gets larger, better scaling is observed. However, for small to moderate sized
problems, the scaling is poor, as expected on beowulf clusters.

4.4.2 Comparison with sample sorting

Several prior works [20, 68, 109] conclude that sample sort is the most effi-

cient parallel sorting algorithm for large n and p. Samplesort is characterized

by having each processor distribute its dn
p
e elements into p buckets, where the

bucket boundaries are determined by some form of sampling. Once the buckets

are formed, a single round of all-to-all communication follows, with each proces-

sor i receiving the contents of the ith bucket from everybody else. Finally, each

processor performs some local computation to place all its received elements in

sorted order.

87

Chapter 4. Parallel Sorting

Figure 4.8: The performance of cache-oblivious merging is compared with
simple tree based merging. Cache oblivious outperforms tree merging on very
large problem sizes with a large number of processors by up to 15%. The savings
are much smaller as a fraction of total sorting time.

One of the problems we encountered with sample sorting was the cost of

picking samples, and picking splitters from those samples. Since we are inter-

ested in sorting extremely large amounts of data, the sampling step and picking

splitters turns out to be very expensive.

The other drawback of sample sort is that the final distribution of elements

may be uneven. Much of the work in sample sorting is directed towards reducing

the amount of imbalance, providing schemes that have theoretical bounds on

the largest amount of data a processor can collect in the routing. The problem

with one processor receiving too much data is that the computation time in the

subsequent steps is dominated by this one overloaded processor. Furthermore,

88

Chapter 4. Parallel Sorting

Figure 4.9: Several parallel sorting algorithms are compared. A parallel sort
with exact splitters determined through parallel selection outperforms both im-
plementations of sample sort.

some applications require an exact output distribution; this is often the case

when sorting is just one part of a multi-step process. In such cases, an additional

redistribution step would be necessary, where elements are communicated across

boundaries.

We compare the performance of our algorithm with two different implemen-

tations of sampling based sorts in Figure 4.9. “Psort with median splitters” is

our parallel sorting algorithm, which uses medians on each processor to pick

exact splitters. “Psort with sampled splitters” is the same algorithm, but it

89

Chapter 4. Parallel Sorting

uses random sampling to pick splitters instead of medians. “Sample sort” is a

traditional sampling based sorting algorithm, which has the following steps:

1. Pick splitters by sampling or oversampling.

2. Partition local data to prepare for the communication phase.

3. Route elements to their destinations.

4. Sort local data.

5. Redistribute to adjust processor boundaries.

The steps in Samplesort differ from the Psort algorithms in two ways. Psort

sorts local data first, whereas Sample sort sorts local data as the last step in

the algorithm. Sample sort may need to do an extra round of communication

to adjust processor boundaries if the resulting distribution is different from the

required one.

Our algorithm runs much faster than the traditional Samplesort, although

both show good scalability. We do not experiment with a wide range of sampling

methods, but follow a standard strategy of picking p2 splitters for p processors.

Since our input is uniformly distributed, we do get good splitters.

1. Partitioning local data in Sample sort before the element routing step is

much slower than merging streams of data received from other proces-

sors in Psort. This is because merging is much more cache-friendly than

partitioning.

90

Chapter 4. Parallel Sorting

2. Sample sort also has to perform an extra round of communication to re-

balance the data distribution. If the sampled splitters do not approximate

the distribution well, the load imbalance may be large, and this extra

round of communication may incur a larger penalty.

4.5 Conclusion

We present a high performance, highly scalable parallel sorting algorithm

that compares favorably against the traditional sample sort algorithm. Our

code uses the C++ Standard Template Library [98] and MPI [44], making it

robust and portable.

There may be room for further improvement in our implementation. The

cost of merging can be reduced by interleaving the p-way merge step with the

element routing, merging sub-arrays as they are received. Alternatively, using

a data structure such as a funnel [24, 52] may allow better cache efficiency

to reduce the merging time. Another potential area of improvement is the

exact splitting. Instead of traversing the search tree to completion, a threshold

can be set; when the active range becomes small enough, a single processor

gathers all the remaining active elements and completes the splitter computation

sequentially. This method, used by Saukas and Song [105], helps reduce the

91

Chapter 4. Parallel Sorting

number of communication rounds in the tail end of the step. Finally, this parallel

sorting algorithm will directly benefit from future improvements in sequential

sorting and communication schemes.

This is a new deterministic algorithm for parallel sorting that makes a strong

case for exact splitting on modern high performance computers. Aside from

some intricacies of determining the exact splitters, the algorithm is conceptually

simple to understand, analyze, and implement. Our implementation is used to

provide the sort function in Star-P [76], and we hope our efforts will guide

other implementations.

92

Chapter 5

Applications of Star-P and the
Graph Toolbox

This chapter describes several applications built with Star-P and the graph

toolbox. The following applications are described: a problem in computa-

tional fluid dynamics, a graph analysis benchmark implemented on extremely

large graphs, combinatorial preconditioners for solving linear systems, and non-

negative matrix factorizations.

5.1 An application in computational fluid dy-

namics

This application used a pre-release version of Star-P when eigs was not

yet available to solve eigenvalue problems.

93

Chapter 5. Applications of Star-P and the Graph Toolbox

2
2

!!"!#
1

1

!!"!#

1

2

x

y

z

g

c =1

c =0

Figure 5.1: Geometry of the Hele-Shaw cell. The heavier fluid is placed above
the lighter one. Either one of the fluids can be the more viscous one. A Cheby-
shev grid is employed in the y-direction, and compact finite differences in the
z-direction.

Goyal and Meiburg [64] study the influence of viscosity variations on the

density driven instability of two miscible fluids. The two fluids of different

density and viscosity are in a vertical Hele-Shaw cell as shown in figure 5.1.

This problem is used to model porous media flows and finds applications in

enhanced oil recovery, fixed bed regeneration and groundwater flows.

Figure 5.1 shows the discretization of the problem, which yields an algebraic

system of the form Aφ = σBφ. The eigenvalue σ represents the growth rate

of the perturbations, while the eigenvector φ reflects the shape of the pertur-

bations. A positive (negative) eigenvalue indicates unstable (stable) behavior.

The system has a 5× 5 block structure reflecting the 5 variables at each mesh

point (3 velocity components u, v and w, relative concentration of the heavier

fluid c, and pressure p).

94

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.2: The generalized eigenvalue problem to be solved for the Hele-Shaw
cell is Aφ = σBφ. A is an asymmetric matrix, whereas B is a diagonal matrix
with many zeros on the diagonal

A discretization of 165 × 25 points turns out to be sufficient for this prob-

lem. Since we solve for 5 variables at each grid point, the matrix A is of the

size 20, 625 × 20, 625. The number of non-zeros is 3, 812, 450. The matrix is

unsymmetric both in values and non-zero structure, as shown in the spy plots

in figure 5.2. In order to calculate the largest eigenvalue, we use the power

method with shift and invert in Star-P.

The original non-Star-P code used LAPACK [7] with ARPACK [84], while

the Star-P code is using a shift-and-invert method with a linear solve (Su-

perLU DIST) as shown in figure 5.3. Note that this problem was solved before

eigs was supported in Star-P. Hence we used a simple Star-P implementa-

tion of the power method. We use an initial guess of 0.1, and it converges to

0.0194. The precision is sufficient for linear stability analysis. We used a cluster1

1We used 16 nodes of a 32-node cluster. Each node in the cluster had a 2.6GHz Pentium
Xeon CPU, 3GB of RAM, and gigabit ethernet.

95

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function lambda = power (A, B, sigma, iter, tol)

02 % Power method to compute the largest eigenvalue

03

04 n = length (A);

05 C = A - sigma * B;

06 y = rand (n, 1);

07

08 for k=1:iter

09 q = y ./ norm (y);

10 v = B * q;

11 y = C \ v;

12

13 theta = dot (q, y);

14 res = norm (y - theta * q);

15 if res <= tol, break; end

16 end

17

18 lambda = 1 / theta + sigma;

Figure 5.3: Star-P code for the shift-and-invert eigensolver.

for the computation. Results are presented in Table 5.1. Our results validated

the results attained from the original sequential code, and allow scaling to larger

problems.

5.2 SSCA #2 graph analysis benchmark

The SSCAs (Scalable Synthetic Compact Applications) are a set of bench-

marks designed to complement existing benchmarks such as the HPL [43] and

the NAS parallel benchmarks [13]. Specifically, SSCA #2 [10] is a compact ap-

96

Chapter 5. Applications of Star-P and the Graph Toolbox

No. of processors Time (seconds)
4 90
8 39
16 33

Table 5.1: Time to solve the generalized eigenvalue problem. With a large
number of processors, excess communication within the Beowulf cluster in the
sparse direct solver reduces performance.

plication that has multiple kernels accessing a single data structure (a directed

multigraph with weighted edges). We describe our implementation of version

1.1 of the benchmark. Version 2.0 [12], which differs significantly from version

1.1, has since been released.

The data generator generates an edge list in random order for a multigraph

of sparsely connected cliques as shown in Figure 5.4. The four kernels are as

follows:

1. Kernel 1: Create a data structure for further kernels.

2. Kernel 2: Search graph for a maximum weight edge.

3. Kernel 3: Perform breadth first searches from a set of start nodes.

4. Kernel 4: Recover the underlying clique structure from the undirected
graph.

97

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.4: The left image shows the conceptual SSCA #2 graph (Kepner).
The image on the right is an SSCA #2 graph generated with scale 8 (256 nodes)
and plotted with Fiedler co-ordinates.

5.2.1 SSCA#2 description

Scalable data generator

The data generator is the most complex part of our implementation. It

generates edge tuples for subsequent kernels. No graph operations are performed

at this stage. The input to the data generator is a scale parameter, which

indicates the size of the graph being generated. The resulting graph has 2scale

nodes, with a maximum clique size of b2scale/3c, a maximum of 3 edges with the

same endpoints, and a probability of 0.2 that an edge is uni-directional. The

vertex numbers are randomized, and a randomized ordering of the edge tuples is

presented to the subsequent kernels. Our implementation of the data generator

closely follows the pseudocode published in the spec [10].

98

Chapter 5. Applications of Star-P and the Graph Toolbox

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 7464

Figure 5.5: Matlab spy plot of the input graph. The input graph is random-
ized, as evidenced by no observed patterns in the spy plot.

Kernel 1

Kernel 1 creates a read-only data structure that is used by subsequent ker-

nels. We create a sparse matrix corresponding to each layer of the multigraph.

The multigraph has three layers, since there is a maximum of three parallel

edges between any two nodes in the graph. Matlab provides several ways of

constructing sparse matrices, sparse,which takes as its input a list of three-

tuples: (i, j, wij). Its output is a sparse matrix with a nonzero wij in every

location (i, j) specified in the input. Figure 5.5 shows a spy plot of one layer of

the input graph.

99

Chapter 5. Applications of Star-P and the Graph Toolbox

Kernel 2

In kernel 2, we search the graph for edges with maximum weight. find is

the inverse of sparse. It returns all nonzeros from a sparse matrix as a list of

three-tuples. We then use max to find the maximum weight edge.

Kernel 3

In kernel 3, we perform breadth first searches from a given set of starting

points. We use sparse matrix matrix multiplication to perform all breadth first

searches simultaneously from the given starting points. Let G be the adja-

cency matrix representing the graph and S be a matrix corresponding to the

starting points. S has one column for each starting point, and one non-zero in

each column. Breadth first search is performed by repeatedly multiplying G by

S: Y = G ∗ S. We perform several breadth first searches simultaneously by

using sparse matrix matrix multiplication. Star-P stores sparse matrices by

rows, and parallelism is achieved by each processor computing some rows in the

product [103, 108].

Kernel 4

Kernel 4 is the most interesting part of the benchmark. It can be consid-

ered to be a partitioning problem or a clustering problem. We have several

100

Chapter 5. Applications of Star-P and the Graph Toolbox

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 8488
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 1934

Figure 5.6: The image on the left is a spy plot of the graph, reordered after
clustering. The image on the right magnifies a portion around the diagonal.
Cliques are revealed as dense blocks on the diagonal.

implementations of kernel 4 based on spectral partitioning (figure 5.4), “seed

growing” (figure 5.6), and “peer pressure” algorithms. The peer pressure and

seed growing implementations scale better than the spectral methods, as ex-

pected. We now demonstrate how we use the infrastructure described above to

implement kernel 4 in a few lines of Matlab or Star-P. Figure 5.6 shows a

spy plot of the undirected graph after clustering. The clusters show up as dense

blocks along the diagonal.

Our seed growing algorithm (figure 5.7) starts by picking a small set of seeds

(about 2% of the total number of nodes) randomly. The seeds are then grown

so that each seed claims all nodes reachable by at least k paths of length 1

or 2, where k is the size of the largest clique. This may cause some ambigu-

ity, since some nodes might be claimed by multiple seeds. We tried picking an

independent set of nodes from the graph by performing one round of Luby’s al-

101

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function J = seedgrow (seeds)

02 % Clustering by breadth first searches

03

04 % J is a sparse matrix with one seed per column.

05 J = sparse (seeds, 1:nseeds, 1, n, nseeds);

06

07 % Vertices reachable with 1 hop.

08 J = G * J;

09 % Vertices reachable with 1 or 2 hops.

10 J = J + G*J;

11 % Vertices reachable with at least k paths of 1 or 2 hops.

12 J = J >= k;

Figure 5.7: Breadth first parallel clustering by seed growing.

gorithm [87] to keep the number of such ambiguities as low as possible. However,

the quality of clustering remains unchanged when we use random sampling. We

use a simple approach for disambiguation: the lowest numbered cluster claim-

ing a vertex claims it. We also experimented with attaching singleton nodes to

nearby clusters to improve the quality of clustering.

Our peer pressure algorithm (figure 5.8) starts with a subset of nodes desig-

nated as leaders. There has to be at least one leader neighboring every vertex

in the graph. This is followed by a round of voting where every vertex in the

graph selects a leader, selecting a cluster to join. This does not yet yield good

clustering. Each vertex now looks at its neighbors and switches its vote to the

most popular leader in its neighborhood. This last step is crucial, and in this

case, it recovers more than 95% of the original clique structure of the graph.

102

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function cluster = peerpressure (G)

02 % Clustering by peer pressure

03

04 % Use maximal independent set routine from GAPDT

05 IS = mis (G);

06

07 % Find all neighbors in the independent set.

08 neighbors = G * sparse(IS, IS, 1, length(G), length(G));

09

10 % Each vertex chooses a random neighbor in the independent set.

11 R = sprand (neighbors);

12 [ignore, vote] = max (R, [], 2);

13

14 % Collect neighbor votes and join the most popular cluster.

15 [I, J] = find (G);

16 S = sparse (I, vote(J), 1, n, n);

17 [ignore, cluster] = max (S, [], 2);

Figure 5.8: Parallel clustering by peer pressure

We experimented with different approaches to select leaders. At first, it

seemed that a maximal independent set of nodes from the graph was a natural

way to pick leaders. In practice, it turns out that simple heuristics (such as the

highest numbered neighbor) gave equally good clustering. We also experimented

with more than one round of voting. The marginal improvement in the quality

of clustering was not worth the additional computation time.

103

Chapter 5. Applications of Star-P and the Graph Toolbox

Matrix nr = 1024, nc = 1024, nnz = 7144
Bucket nnz: max = 120, min = 0, avg = 1.74414, total = 7144, max/avg = 69

10 20 30 40 50 60

10

20

30

40

50

60

0

30

60

90

120

Figure 5.9: The 3D visualization of the SSCA #2 graph on the left is produced
by relaxing the Fiedler co-ordinates projected onto the surface of a sphere. The
right figure shows a density spy plot of the SSCA #2 graph.

5.2.2 Visualization of large graphs

Graphics and visualization are a key part of an interactive system such as

Matlab. The question of how to effectively visualize large datasets in general,

especially large graphs, is still unsolved. We successfully applied methods from

numerical computing to come up with meaningful visualizations of the SSCA

#2 graph.

One way to compute geometric co-ordinates for the nodes of a connected

graph is to use Fiedler co-ordinates [67] for the graph. Figure 5.4 shows the

Fiedler embedding of the SSCA #2 graph. In the 2D case, we use the eigenvec-

tors (Fiedler vectors) corresponding to the first two non-zero eigenvalues of the

Laplacian matrix of the graph as co-ordinates for nodes of the graph in a plane.

104

Chapter 5. Applications of Star-P and the Graph Toolbox

For 3D visualization of the SSCA #2 graph, we start with 3D Fiedler co-

ordinates projected onto the surface of a sphere. We model nodes of the graph

as particles on the surface of a sphere. There is a repulsive force between

all particles, inversely proportional to the distance between them. Since these

particles repel each other on the surface of a sphere, we expect them to spread

around and occupy the entire surface of the sphere. Since there are cliques

in the original graph, we expect clusters of particles to form on the surface

of the sphere. At each timestep, we compute a force vector between all pairs

of particles. Each particle is then displaced some distance based on its force

vector. All displaced particles are projected back onto the sphere at the end of

each timestep.

This algorithm was used to generate figure 5.9. In this case, we simulated

256 particles and the system was evolved for 20 timesteps. It is important to

first calculate the Fiedler co-ordinates. Beginning with random co-ordinates

results in a meaningless picture. We used PyMOL [40] to render the graph.

5.2.3 Experimental Results

We ran our implementation of SSCA #2 (ver 1.1, integer only) in Star-P.

The Matlab client was run on a generic PC. The Star-P server was run on an

SGI Altix with 128 Itanium II processors with 128G RAM (total, non-uniform

105

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.10: SSCA #2 v1.1 execution times (Star-P, Scale=21)

memory access). We used a graph generated with scale 21. This graph has 2

million nodes. The multigraph has 321 million directed edges; the undirected

graph corresponding to the multigraph has 89 million edges. There are 32

thousand cliques in the graph, the largest having 128 nodes. There are 89

million undirected edges within cliques, and 212 thousand undirected edges

between cliques in the input graph for kernel 4. The results are presented in

Fig. 5.10.

Our data generator scales well; the benchmark specification does not require

the data generator to be timed. A lot of time is spent in kernel 1, where data

structures for the subsequent kernels are created. The majority of this time

is spent in searching the input triples for duplicates, since the input graph

is a multigraph. Kernel 1 creates several sparse matrices using sparse, each

corresponding to a layer in the multigraph. Time spent in kernel 1 also scales

106

Chapter 5. Applications of Star-P and the Graph Toolbox

Operation Source LOC Total line counts
Data generator 176 348

Kernel 1 25 63
Kernel 2 11 34
Kernel 3 23 48

Kernel 4 (spectral) 22 70
Kernel 4 (seed growing) 55 108
Kernel 4 (peer pressure) 6 29

Table 5.2: Line counts for Star-P implementation of SSCA#2. The “Source
LOC” column counts only executable lines of code, while the “Total line counts”
column counts the total number of lines including comments and whitespace.

very well with the number of processors. Time spent in Kernel 2 also scales as

expected.

Kernel 3 does not show speedups at all. Although all the breadth first

searches are performed in parallel, the process of subgraph extraction for each

starting point creates a lot of traffic between the Star-P client and the Star-P

server, which are physically in different states. This client server communication

time ends up dominating over the computation time. We will minimize this

overhead by vectorizing all of kernel 3 in a future release.

Kernel 4, the non-trivial part of the benchmark, actually scales very well.

We show results for our best performing implementation of kernel 4, which uses

the seed growing algorithm.

The evaluation criteria for the SSCAs also include software engineering met-

rics such as code size, readability, maintainability, etc. Our implementation is

107

Chapter 5. Applications of Star-P and the Graph Toolbox

extremely concise. We show the source lines of code (SLOC) for our implemen-

tation in Table 5.2. We also show absolute line counts, which include blank

lines and comments, as we believe these to be crucial for code readability and

maintainability. Our implementation runs without modification in sequential

Matlab, making it easy to develop and debug on the desktop before deploying

on a parallel platform.

We have run the full SSCA #2 benchmark (spec v0.9, integer only) on graphs

with 227 = 134 million nodes on the SGI Altix. We have also manipulated

extremely large graphs (1 billion nodes and 8 billion edges) on an SGI Altix

with 256 processors using Star-P.

This demonstrates that the sparse matrix representation is a scalable and

efficient way to manipulate large graphs. Not that the codes in figure 5.7 and fig-

ure 5.8 are not pseudocodes, but actual code excerpts from our implementation.

Although the code fragments look very simple and structured, the computation

manipulates sparse matrices, resulting in highly irregular communication pat-

terns on irregular data structures.

108

Chapter 5. Applications of Star-P and the Graph Toolbox

5.3 Solution of sparse linear systems

We describe the implementation of two types of combinatorial precondition-

ers: support graph (Vaidya) preconditioners and an algebraic multigrid precon-

ditioner.

Sparse linear systems arise naturally in several problems, most commonly

in the numerical solution of partial differential equations. Preconditioned it-

erative methods are often the methods of choice to solve large sparse linear

systems. The number of iterations of conjugate gradient (CG) needed to solve

Ax = b is bounded above by the square root of the condition number of

A [41]. Convergence can be accelerated by solving a preconditioned linear sys-

tem M−1Ax = M−1b instead [120]. The number of iterations of CG is then

bounded by the square root of the ratio of the extreme generalized eigenvalues

of Ay = λMy. Combinatorial preconditioners appear to provide a promising

approach to solve certain classes of problems [17, 22, 30, 119].

5.3.1 Support graph preconditioners

Vaidya proposed two classes of preconditioners [18]. The first class, max-

imum weight spanning tree (MWST) preconditioners, guarantees a condition

number bound of O(n2) for any n × n sparse diagonally dominant symmetric

109

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.11: The 2D model problem and the corresponding Vaidya precondi-
tioner. The basic Vaidya preconditioner is shown in blue; the augmented Vaidya
precondtioner includes the extra red edges.

M -matrix. The second class augments the MWST with extra edges. These ex-

tra edges can be found quickly (sequentially) with simple graph algorithms. The

cost of factorizing these preconditioners depends upon the extra edges added.

The factorization cost can be balanced with iteration costs, bounding the work

in the linear solver by (O1.75) for arbitrary sparse M -matrices, and by O(n1.2)

for M -matrices of planar graphs.

Chen and Toledo [30] report that Vaidya’s preconditioners seem to converge

at an almost constant rate. Moreover, as predicted by the theoretical analysis,

they find that such preconditioners are sensitive only to the nonzero structure

of the co-efficient matrix, and not to the values of its entries.

110

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.12: The 3D model problem and the corresponding Vaidya precondi-
tioner. The basic Vaidya preconditioner is shown in blue; the augmented Vaidya
precondtioner includes the extra red edges.

Figure 5.11 shows the 2D (100 grid points) and figure 5.12 shows th3 3D

model problem (125 grid points), along with the corresponding Vaidya precon-

ditioners. The blue edges correspond to the MWST, while the red edges are the

extra edges for the augmented Vaidya preconditioner. The basic Vaidya pre-

conditioner simply uses the MWST, the implementation of which is described

in chapter 2. Our implementation of the augmented Vaidya preconditioners is

shown in code fragment 5.13.

Construction of the augmented Vaidya preconditioner starts with the MWST.

It then partitions the tree into subgraphs of equal size, and adds back the

heaviest graph edges between the subgraphs. We use the partitioning scheme

described by Chen and Toledo [30]. This scheme requires a rooted tree. We

111

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function T = vaidya support (G, npart)

02 % Compute the Vaidya preconditioner for a symmetric M-matrix

03

04 % Get the simple Vaidya preconditioner based on the MST

05 T = mst (G, ’max’);

06

07 % Partition the tree

08 part label = treepart (T, npart);

09

10 % If edge weights are not unique, contract may get confused

11 Gu = unique edges (G);

12 [ign E SN] = contract (Gu, part label, ’argmax’);

13

14 % Augment MST with heavy edges between the tree partitions

15 U = nonzeros (triu (E SN));

16 V = nonzeros (triu (E SN’));

17 T aug = sparse ([U; V], [V; U], 1, length(G), length(G));

18 T = G .* (T | T aug);

19

20 % Preserve row sums in the preconditioner

21 rowsumsG = sum (G, 2);

22 rowsumsT = sum (T, 2);

23 T = T + diag (sparse (rowsumsG - rowsumsT));

Figure 5.13: The augmented Vaidya preconditioner. Construction of the aug-
mented Vaidya preconditioner starts with the maximum weight spanning tree.
The tree is then partitioned and heavy graph edges between partitions are added
back.

112

Chapter 5. Applications of Star-P and the Graph Toolbox

implement a simple algorithm to compute the parent information in the tree

(code fragment 5.14). The mst routine from GAPDT only returns the tree as an

adjacency matrix without the parent information. Bader et al [35] describes an

efficient pointer jumping algorithm to compute a rooted tree when finding con-

nected components. We believe it should be possible to combine their approach

with the Boruvka step to compute a rooted MWST efficiently.

Our parent computation is performed by a series of breadth-first searches

(code fragment 5.14). The computation starts at the leaves of the tree and

proceeds towards the root. We assume that the tree is connected. Tree leaves

have only one parent. The algorithm uses breadth first search to find the parents

of leaves (lines 16–19). The leaves are then removed from the tree, and parent

degrees are updated (lines 22–23).

The parent information is required for tree partitioning (code fragment 5.15).

The routine treepart divides the tree into connected subtrees with sizes be-

tween n/t and dn/t − 1 [30]. n is the number of nodes in the graph, d is the

maximum degree of a node, and t is the number of desired subtrees. The algo-

rithm accumulates the number of children in subtrees as it traverses up the tree

(lines 18–19). If there are more than n/t − 1 nodes in a subtree at any given

point, the subtree is cut from the tree (lines 22–27). Upon termination, the

connected components routine is used to recover the partitions. The optimal

113

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function parent = getparent (T)

02 % Parent information for nodes in a tree

03

04 n = length (T);

05 T = spones(zerodiag (T)));

06 parent = zeros (n, 1);

07

08 while true

09 % Find the leaves at this level

10 outDegree = sum(T,2);

11 leaves = find(outDegree == 1);

12 leafSize = length(leaves);

13

14 if isempty(leaves) break; end

15

16 % Find the parents of these leaves

17 leafMatrix = sparse(leaves, 1:leafSize, 1, length (T), leafSize);

18 parentMatrix = T * leafMatrix;

19 [connections, ign] = find(parentMatrix);

20 parent (leaves) = connections;

21

22 % Drop the edges from the original tree

23 S = sparse([connections leaves], [leaves connections], 1, n, n);

24 T = T - S;

25 end

Figure 5.14: Compute parents of nodes in a tree. The computation starts with
the leaves of the tree and works its way up the tree. Leaves are nodes of degree
one; they have only one parent. Parents of leaves are located with breadth-first
search (implemented with matvec).

114

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function partlabel = treepart (T, subgraphs)

02 % Partition a tree into subgraphs of roughly equal size

03

04 splitBound = ceil(n / subgraphs); % Node Splitting criteria

05 parent = getparent(T); % Get parent information

06 deg = sum(T, 2); % Node degrees

07 notSplit = ones(n, 1); % Nodes which have been processed

08 nKids = ones(n, 1); % Number of children

09

10 while ~isempty(leaves)

11 leaves = find (deg == 1);

12 leafparent = parent (leaves);

13

14 % Update number of children in subtrees

15 toAdd = sparse (leafparent, 1, nKids(leaves), n, 1);

16 nKids(leafparent) = nKids(leafparent) + toAdd(leafparent);

17

18 % Find nodes that can form subtrees (partitions)

19 splitRoot = find (nKids >= splitBound & notSplit);

20 splitParent = parent (splitRoot);

21

22 % Disconnect partitioned subtrees from the tree

23 % Update node degrees

24 ...

25

26 notSplit (splitRoot) = 0;

27 end

28

29 % Use connected components to assign labels to partitions.

30 partlabel = components(T);

Figure 5.15: Partition a tree into subtrees of roughly equal size. The algorithm
accumulates the number of children in subtrees as it traverses up the tree.
Subtrees are disconnected if they have sufficient nodes to satisfy the partitioning
criteria. Upon termination, the connected components routine is used to recover
the partitions. Some lines in this code are omitted for simplicity.

115

Chapter 5. Applications of Star-P and the Graph Toolbox

number of partitions may need to be determined experimentally for a specific

problem.

5.3.2 Algebraic multigrid preconditioners

Multigrid methods [23] are attractive because they can solve linear systems

with N unknowns (nodes) typically arising from certain elliptical PDEs in O(N)

time. Multigrid methods also parallelize well and have been scaled to hundreds

of processors [1].

Multigrid methods solve the system on several different scales, using two

complementary processes: smoothing and coarse grid correction. A few itera-

tions of Jacobi or Gauss-Seidel are used to smooth out high frequency error.

Coarse grid correction uses a restriction operator to restrict the residual to a

coarse grid, solves the system on the coarse grid, and then transfers the solution

back to the fine grid with an interpolation operator. The coarse grid correction

eliminates low frequency error.

Algebraic multigrid [23, 116] derives its intuition from geometric multigrid,

but in a way that does not require explicit knowledge of the underlying geometry.

The series of increasingly coarse problems are computed by graph theoretic

techniques. Algebraic multigrid (AMG) does not have linear time guarantees

and works well for only certain types of systems.

116

Chapter 5. Applications of Star-P and the Graph Toolbox

Both geometric and algebraic multigrid methods can be efficiently imple-

mented in Matlab and Star-P, by storing the grids as sparse matrices. Sparse

matrix matrix multiplication (chapter 2) is useful in the construction of coarse

grids. Sparse matrix dense vector multiplication is used to implement the Jacobi

algorithm for relaxation. It is also used for coarse grid correction, to transfer

residuals between hierarchies of grids.

The O(n) complexity of multigrid is achieved through the V-cycle, which

solves the problem recursively on coarser grids and then interpolates the solu-

tion back to finer grids. Code fragment 5.16 describes the V-cycle. In geometric

multigrid, the restriction and interpolation operators are computed using the

discretization stencil. In AMG, these are computed with graph theoretic tech-

niques.

Coarse grid selection first defines a strength matrix As. Weak connections

(edges) in A are deleted. A common criterion for picking weak connections is

to use a strength parameter θ. Entries smaller than θ times the largest row

entry in the matrix are considered as weak connections and dropped from As.

An independent set of nodes is then selected from the graph As. Finally, addi-

tional points may be selected in a second pass if needed to satisfy interpolation

requirements. This second pass is expensive, and has been largely abandoned

117

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function z = mgv (operators, b, level)

02 % The multigrid V-cycle

03

04 A = operators.A{level};
05 I = operators.Interpolate{level};
06 C = operators.Coarsen{level};
07

08 % Do a direct solve if at the bottom of recursion

09 if level == operators.levels; z = A \ b; return; end

10

11 % Relaxation - Typically Jacobi or Gauss-Seidel

12 x = relax (A, b);

13

14 % Coarse grid correction

15 b coarse = C * (b - A * x); % Coarsen the RHS

16 z = mgv (ops, b coarse, level+1); % Solve recursively

17 z = x + I * z; % Correct the solution

Figure 5.16: The multigrid V-cycle.

in favor of other approaches for defining interpolation. The algorithm can be

sensitive to the choice of θ.

The independent set algorithm used in AMG differs slightly from the one

discussed in chapter 3. When a node is added to the independent set, it is

designated as a C point, belonging to the coarse set. Its neighbors are designated

as F points, belonging to the fine set. The degrees of the neighbors of F

points are incremented to make it more likely for them to be picked next by

the independent set algorithm. Our MIS implementation in GAPDT can be

modified to use this heuristic for an efficient parallel implementation.

118

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.17: The top image is a quadtree discretization of a level set problem.
Grid Image reproduced with permission from Vikram Aggarwal. The graph
shows performance of bi-conjugate gradient with several AMG preconditioners,
a Jacobi preconditioner, and an ILU preconditioner.

119

Chapter 5. Applications of Star-P and the Graph Toolbox

Figure 5.18: The top image is a quadtree discretization of a level set problem.
Grid Image reproduced with permission from Vikram Aggarwal. The graph
shows performance of bi-conjugate gradient with several AMG preconditioners,
a Jacobi preconditioner, and an ILU preconditioner.

120

Chapter 5. Applications of Star-P and the Graph Toolbox

We describe an implementation of AMG by Roh and Shah [104], to solve a

level set problem in fluid dynamics [3, 95]. The quadtree discretization along

with a second order accurate method produces unsymmetric matrices. As a

result, they use preconditioned BiCGstab [14] to solve the linear systems.

Since the matrix A is unsymmetric, the symmetric matrix (A + AT)/2 is

used to compute the coarse and fine grid operators. Figures 5.17 and 5.18

show the meshes arising from quadtree discretizations, and the speed of con-

vergence with several AMG preconditioners, a Jacobi preconditioner, and an

ILU precondtioner. The AMG code can run in parallel in Star-P, except for

the computation of coefficients of the interpolation matrix, which we have not

yet vectorized. All variants of AMG preconditioners use fewer iterations than

Jacobi or ILU preconditioners, even though Jacobi gives the fastest time to so-

lution. We believe an approach based on AMG may be promising to parallelize

large problems arising from quadtree discretizations of level set problems. The

effectiveness of this method for octree discretizations of 3D problems has yet to

be investigated.

121

Chapter 5. Applications of Star-P and the Graph Toolbox

5.4 Non-negative matrix factorization

Non-negative matrix factorization (NNMF) [82] is a useful tool for machine

learning. NNMF is similar to principal component analysis (PCA) and vec-

tor quantization (VQ): V ≈ WH. All three methods are approximate matrix

factorizations. The r columns of W form a basis, and the coefficients in H

represent linear combinations of the columns of W , which approximate columns

in V . The matrix Vm×n is approximated by a rank r factorization

Vij ≈ (WH)ij =
r∑

a=1

WiaHaj.

In VQ, each column of H is constrained to be a vector with zeros in all

positions except one. PCA, on the other hand, constrains the columns of W to

be orthonormal and the rows of H to be orthogonal to each other. Non-negative

factorization (NNMF) constrains the entries of W and H to be greater than or

equal to zero.

All three methods can be implemented in Matlab, and scaled to large

problem sizes with Star-P. Here, we describe our implementation of NNMF

in Star-P. The matrix V is often sparse in applications. Sparsity in V may

or may not imply sparsity in W and H. Lee and Seung [83] describe two

122

Chapter 5. Applications of Star-P and the Graph Toolbox

multiplicative algorithms for NNMF. A discussion of our implementations of

both these algorithms follows.

A cost function quantifies the quality of a non-negative factorization. The

simplest measure of cost is the square of the Euclidean distance between A and

B,

||A−B||2 =
∑
ij

(Aij −Bij)
2.

The corresponding multiplicative update rules that guarantee convergence

are

Haj ← Haj
(W T V)aj

(W T WH)aj

,

Wia ← Wia
(V HT)ia

(WHHT)ia

.

Another useful measure of cost is the Kullback-Leibler divergence [81]. In

this case, the entries in A and in B must sum to 1, and they can be regarded

as probability distributions.

D(A|B) =
∑
ij

(Aij log
Aij

Bij

− Aij + Bij).

The multiplicative rules that guarantee convergence under Kullback-Leibler

divergence are

123

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function [W, H] = euclidean update (V, W, H)

02 % Euclidean update rules for NNMF

03

04 Wt = W’;

05 H = H .* (Wt * V) ./ ((Wt * W) * H + eps);

06

07 Ht = H’;

08 W = W .* (V * Ht) ./ (W * (H * Ht) + eps);

Figure 5.19: Multiplicative update rules to minimize the Euclidean distance
cost function.

Haj ← Haj

∑
i WiaVij/(WH)ij∑

k Wka

,

Wia ← Wia

∑
j HajVij/(WH)ij∑

k Hak

.

Code fragment 5.19 describes the update rules to minimize the Euclidean

distance between V and WH. Note that machine epsilon is added to all zero

entries in the factorization to avoid division by zero. The matrix V is large and

sparse, but the factorization is of low rank. The factors W and H may be dense.

Code fragment 5.20 implements of the divergence update rules. We need

to be careful in our implementation of these update rules, since the sparsity of

V needs to be preserved. The update rules form the product WH, which will

typically be dense. Since we are only interested in the values of the product

WH corresponding to the nonzero positions in V , we explicitly work with the

nonzeros in the product.

124

Chapter 5. Applications of Star-P and the Graph Toolbox

01 function [W, H] = divergence update (V, W, H)

02 % Kullback-Leibler update rules for NNMF

03

04 [num ent, num feat] = size (V);

05 [V ent, V feat, V val] = find (V);

06

07 WH val = prodWH (W, H, V ent, V feat);

08 V over WH = sparse (V ent, V feat, V val ./ WH val, num ent, num feat);

09

10 Ht = H’;

11 W = W .* ((V over WH) * Ht) ./ (ones(num ent, 1) * sum(Ht));

12

13 WH val = prodWH (W, H, V ent, V feat);

14 V over WH = sparse (V ent, V feat, V val ./ WH val, num ent, num feat);

15

16 Wt = W’;

17 H = H .* (Wt * (V over WH)) ./ (sum(W)’ * ones(1, num feat));

Figure 5.20: Multiplicative update rules to minimize the Kullback-Leibler
divergence cost function.

01 function WH val = prodWH (W, H, V)

02 % Space saving sparse matrix multiplication for NNMF

03

04 [V ent, V feat] = find (V);

05

06 % Find rows of W which contribute to a nonzero in V

07 W V ent = W(V ent, :);

08

09 % Find columns of H which contribute to a nonzero in V

10 H V feat = H(:, V feat)’;

11

12 % Inner product formulation for matrix multiplication

13 WH val = sum (W V ent .* H V feat, 2);

Figure 5.21: The algorithm needs only those nonzeros in the product of W
and H that are present in V. This knowledge is used to compute the product
efficiently and keep it sparse, which might otherwise be a full matrix.

125

Chapter 5. Applications of Star-P and the Graph Toolbox

Code fragment 5.21 describes how the product WH is formed for only those

nonzero positions which exist in V . The implementation picks a row in W and

a column in H, the dot product of which would form a nonzero in V . The

memory requirement is O(nnz), unlike forming the product WH, which may

need O(mn) memory.

We used our implementation of NNMF to factor the Netflix challenge prob-

lem [97]. The Netflix data consists of movie ratings by viewers. Each viewer

rates certain movies on a scale of one to five. The goal is to develop an algo-

rithm that is a good predictor of ratings for movies a user might not yet have

rated. There are 17, 770 unique viewers who have rated at least one of 480, 189

movies. We report performance for a rank 5 factorization. It takes 50 seconds

to perform ten iterations of the update rules to minimize the Euclidean cost

function2. Minimizing the Kullback-Leibler divergence is considerably more

expensive, taking 1150 seconds for ten iterations.

Our initial investigation suggests that NNMF may not be a good method

to solve the Netflix prediction problem. However, we effortlessly implemented

a new non-trivial algorithm in parallel on a large problem. This is exactly

what we envision our infrastructure to enable: rapid, feedback driven algorithm

development on realistic datasets.

214 processors of a 16 core shared memory Opteron computer with 64GB of RAM are
used.

126

Chapter 5. Applications of Star-P and the Graph Toolbox

5.5 Conclusion

We implemented a variety of algorithms using the distributed sparse matrix

infrastructure in Star-P and the graph toolbox built on top of it. We described

a problem in computational fluid dynamics, our implementation of a graph anal-

ysis benchmark, combinatorial preconditioners for solving linear systems, and

non-negative matrix factorizations. The graph benchmark is purely combinato-

rial, whereas non-negative factorization is a numerical algorithm. The support

graph and AMG preconditioners, constructed with combinatorial techniques,

are used to accelerate iterative methods for solving linear systems.

127

Chapter 6

Landscape Connectivity: An
Application in Ecology

6.1 Introduction

Dispersal, the movement of individuals among populations is a critical eco-

logical process that can maintain genetic diversity and rescue declining popu-

lations [27]. As areas of natural habitat are reduced in size and continuity by

human activities, the degree to which the remaining fragments are function-

ally linked becomes increasingly important. The strength of such linkages is

determined by “landscape connectivity”, which despite its intuitive appeal is

inconsistently defined. Measures of connectivity differ in their data require-

ments and information yield, each having their own strengths and weaknesses.

If scarce conservation dollars are to be spent effectively, conservation biologists

128

Chapter 6. Landscape Connectivity: An Application in Ecology

need clear, efficient, and reliable tools relating landscape composition and pat-

tern to important ecological processes.

McRae et al [93] propose a distance metric based on circuit theory, mo-

tivated by the fact that conductive materials display properties analogous to

landscape connectivity. They adapt electrical network theory to model popula-

tions connected by migration, or raster cells connected by individual movement.

Equations describing effective conductance across resistive networks are closely

related to individual movement probabilities and random walk times, as well as

effective migration in analogous networks of subpopulations. Such a model can

be useful for conservation planning and for predicting genetic effects of land-

scape change because of its ability to integrate all possible routes of inter-patch

movement simultaneously.

Circuitscape, a tool written earlier in Java [92], and now in Matlab, imple-

ments a model of animal movement and gene flow in heterogeneous landscapes.

Solution of this problem requires both combinatorial and numerical algorithms.

Even at moderate resolutions, the underlying graphs of habitat maps can be

fairly large, depending on the size of the landscape and the species being mod-

eled. The combination of distributed sparse matrices in Star-P (chapter 2),

the graph toolbox (chapter 3), and vectorization allow computations on large

landscapes, which were not possible earlier.

129

Chapter 6. Landscape Connectivity: An Application in Ecology

6.2 Modeling landscape connectivity

We provide an overview of the intuition behind the modeling process as

presented by McRae et al. [93].

Habitat cells connected by migration can be represented as graphs [118].

Habitat cells represent nodes, while migration paths represent edges. The edge

weights are proportional to numbers of migrants exchanged between a pair of

nodes. Landscape characteristics may cause the number of migrants to vary

across the graph, resulting in varying edge weights. However, the edges are

assumed to be undirected, which implies that dispersal is balanced.

Isolation by distance (IBD) [112] and least cost paths (LCP) [2] are two

common measures of connectivity used in the landscape ecology literature. IBD

models use Euclidean distance as their connectivity metric. Least cost paths,

on the other hand, use optimal routes between samples.

Isolation by Resistance (IBR) takes advantage of the correspondence be-

tween effective resistance in resistive networks and random walks on graphs [45,

79]. Effective resistance captures some important properties needed for a good

connectivity metric [112]: it increases with distance in one-dimensional conduc-

tors, and with the logarithm of the distance in two-dimensional conductors.

130

Chapter 6. Landscape Connectivity: An Application in Ecology

Figure 6.1: Comparison of various connectivity metrics for mahogany and
wolverine populations. Isolation by distance (IBD) based metrics are poor pre-
dictors on landscapes with irregular geometries. Least cost paths (LCP) tend to
restrict movement to single, optimal routes. Isolation by resistance (IBR) as a
distance works well as a predictor of genetic dispersal between habitat patches
in irregularly shaped landscapes. Image reproduced with permission from Brad
McRae.

131

Chapter 6. Landscape Connectivity: An Application in Ecology

Figure 6.1 shows the application of various modeling techniques to mahogany

and wolverine data. IBR modeling provides a much better picture of gene flow in

both cases. Unlike IBD models, IBR incorporates effects of limited and irregular

habitat extent. Unlike LCP models, IBR also accounts for multiple pathways

and wider habitat swaths connecting populations.

Kirchoff’s laws [78] are used in matrix form to solve for effective resistances of

nodes within circuits. Let gij denote the conductance of the resistor connecting

nodes i and j. Let G be an n× n weighted Laplacian matrix, such that Gij =

−gij and Gii =
∑n

j=1 gij. Resistance between nodes x and y (with x < y for

convenience) may be computed using a reduced conductance matrix Gy, which

is the same as G but with the yth row and column removed. The right hand

side I is a vector with all zeros except in the xth position where it is set to

one. Now, solving Gyv = I yields the effective resistance between nodes x and

y in the xth element of v. The effective resistance is denoted by R̂xy, while the

effective conductance is its reciprocal and denoted by Ĝxy.

6.3 Computing effective resistance

Circuitscape [92] was developed to apply IBR methods to problems in land-

scape ecology. The computation typically starts with the raster cell map of a

132

Chapter 6. Landscape Connectivity: An Application in Ecology

landscape exported from a GIS system. The landscape is exported as a matrix

of conductance values assigned to each cell based on landscape features. Every

cell in the landscape is represented by a node in the graph. An m× n cell map

results in a graph with k = mn nodes. Neighbor relationships between cells

in the landscape are represented as edges in the graph. Edge weights in the

graph are an average of the conductance values of the cells they connect. More

sophisticated ways of computing edge weights may also be used. The modeling

allows a cell to be connected to either 4 neighbors or 8 neighbors.

The size of the graph depends on the size of the landscape and the kind of

animal being modeled. The amount of land an animal perceives around itself

typically depends on its size: a mountain lion may perceive about a hundred

meters of land around it, while smaller animals such as mice may only perceive

a few meters [80]. The area of interest may also widely vary. The Yellowstone-

to-Yukon [88] (figure 6.2) project is perhaps the most ambitious conservation

project ever attempted. It seeks to provide continuous connecting corridors for

wildlife movement in protected areas that extend for more than 2000 miles from

Yellowstone’s hot springs to the Yukon’s Mackenzie Mountains.

An ecologist would typically like to work with a resolution fine enough to

match the animal being modeled. As a result, graph sizes get large very quickly.

For example, a 100 km2 area at 100 meter resolution yields a graph with a

133

Chapter 6. Landscape Connectivity: An Application in Ecology

Figure 6.2: The ¡¡¡¡¡¡¡ .mine Yellowstone-to-Yukon conservation region
(www.y2y.net). The region stretches for ======= Yellowstone-to-Yukon
conservation region. The region stretches for ¿¿¿¿¿¿¿ .r276 2000 miles and
covers an area of 460, 000 square miles. Image reproduced from www.y2y.net.

134

http://www.y2y.net.

Chapter 6. Landscape Connectivity: An Application in Ecology

million nodes. A landscape that includes the entire state of California would

result in a graph with 40 million nodes. Landscapes that span several states

can easily result in graphs with hundreds of millions of nodes. The Yellowstone

to Yukon region includes 460, 000 square miles of prime wildlife habitat.

We extended the current version of Circuitscape written in Matlab with

two basic objectives: it should run sequentially in Matlab for interactive use

and development on small to moderate sized problems on desktops. Also, the

same code must be able to scale to very large problems on computers with many

processors and more memory. We achieved these objectives with a combination

of the following:

• We use sparse matrices as a common data structure for combinatorial

computations and numerical computations.

• We borrow several concepts and routines from our graph toolbox (GAPDT)

for operations on graphs.

• We use preconditioned iterative methods in parallel to solve linear sys-

tems for computing effective resistances, since sparse direct solvers lead

to unacceptably large fill.

135

Chapter 6. Landscape Connectivity: An Application in Ecology

• We vectorized existing code for speed in Matlab. This also makes it

possible to run the same code unmodified in Star-P. As a result, scaling

to large problem sizes is effortless.

The sparse matrix support in Star-P (chapter 2) and the graph toolbox

(chapter 3) were developed specifically for applications such as Circuitscape,

which combine combinatorics and numerics to solve a problem. We now discuss

the combinatorics and numerics in Circuitscape.

6.3.1 Combinatorics in Circuitscape

Circuitscape performs several operations on graphs to obtain the Laplacian

of a graph for linear solves. First, it reads the raster cell map from a file and

constructs a graph. The raster cell map is represented by an m×n conductance

matrix, where each nonzero element represents a cell of interest in the landscape.

Each cell is represented by a node in the graph. Given a node in the graph, the

graph construction process inserts an undirected edge connecting the node with

its neighbors. There may be up to either 4 or 8 neighbors. As a result, the graph

has either 4 or 8 nonzeros per row/column. The choice of neighbor connectivity

can affect connectivity of the resulting graph. A graph that is connected with

8 neighbors per cell may not be connected with 4 neighbors per cell.

136

Chapter 6. Landscape Connectivity: An Application in Ecology

Figure 6.3: The southern California region is used as a landscape to model
mountain lions. The original raster map from GIS data is shown on the left;
Matlab visualization of the landscape is shown on the right.

The graph construction process is described in code fragment 6.4. The

edges in the graph are discovered with stencil operations. The graph is then

constructed by calling sparse(). Typically, a habitat patch in a landscape will

be represented by several nodes in the graph. Since we are interested in effective

resistance between habitat patches, all nodes representing a habitat patch must

be contracted into one node (figure 6.5 (a)). Neighbors of all nodes of a habitat

patch are now neighbors of the contracted node. The resulting graph may also

not be connected (figure 6.5 (b)). Using the connected components routine

from GAPDT, we drop all nodes that are not in the main component. This

node pruning step is necessary in order to avoid singularity in the conductance

matrix.

Since we are interested in the current flow between pairs of habitats, nodes

representing a single habitat must be contracted into a single node. Depending

137

Chapter 6. Landscape Connectivity: An Application in Ecology

01 function G = cs builder (gmap)

02 % Generate a graph from a landscape

03

04 % Find left-right neighbors

05 gmap LR = gmap(:,1:end-1) & gmap(:,2:end);

06 u horiz = find ([gmap LR sparse(nrow,1)]);

07 v horiz = find ([sparse(nrow,1) gmap LR]);

08

09 % Find top-bottom neighbors

10 gmap UD = gmap(1:end-1,:) & gmap(2:end,:);

11 u vert = find ([gmap UD; sparse(1,ncol)]);

12 v vert = find ([sparse(1,ncol); gmap UD]);

13

14 % {s, t} are neighbors. nonzeros in gmap are conductances.

15 U = [u horiz; u vert];

16 V = [v horiz; v vert];

17 resistances = 1 ./((1./gmap(U) + 1./gmap(V)) / 2);

18 G = sparse (U, V, resistances);

Figure 6.4: Stencil operations are used to construct the graph corresponding
to a landscape. An edge u, v exists in the graph if and only if cells u and v are
neighbors in the cell map.

on the size of the habitat, a habitat node is connected to several other nodes in

the graph. This typically results in a dense row and column in the matrix. The

actual graph contraction is performed with the contract routine from GAPDT.

Since commonly used sequential graph algorithms do not parallelize well,

the routines in GAPDT implement efficient parallel graph algorithms and are

designed with scalability in mind. This significantly simplifies the implemen-

tation of Circuitscape allowing it to manipulate large graphs in parallel with

ease.

138

Chapter 6. Landscape Connectivity: An Application in Ecology

Figure 6.5: The landscape graph has to be processed before effective resistance
can be computed between habitat patches. First, all habitat patches (polygons),
in green, are contracted into one node each (left). Only the main connected
component is needed for the effective resistance computation (right). The red
parts are disconnected. If the graph includes multiple connected components,
the resulting matrix is singular.

01 function G = cs laplacian (G)

02 % Generate the Laplacian from the matrix

03

04 G = -abs(G); % Make off-diagonals negative

05 G = G - diag(sparse(diag(G))); % Make diagonal zero

06 G = G - diag(sparse(sum(G, 2))); % Make row sums zero

Figure 6.6: The Laplacian of a graph as computed in Matlab.

6.3.2 Numerics in Circuitscape

Once the graph is constructed, the graph Laplacian is formed as shown in

code fragment 6.6. A row and column are then deleted from the Laplacian

(making the matrix symmetric positive definite) as described in the section on

modeling.

In a typical run, an ecologist might want to compute effective resistance

between several pairs of habitats in the graph. In sequential Matlab, we

139

Chapter 6. Landscape Connectivity: An Application in Ecology

Four neighbors per cell
With symamd Without symamd

Number of cells Fill Flops Fill Flops
2.5× 105 6.3× 106 6.1× 108 1.4× 108 7.7× 1010

1× 106 3× 107 5.5× 109 1× 109 1.1× 1012

1.2× 107 3.9× 108 2× 1011 3× 1010 9.5× 1013

4.8× 107 1.8× 109 1.7× 1012 2.4× 1011 1.5× 1015

Eight neighbors per cell
With symamd Without symamd

Number of cells Fill Flops Fill Flops
2.5× 105 1.2× 107 1.8× 109 1.5× 108 8.2× 1011

1× 106 6.1× 107 1.8× 1010 1.1× 109 1.2× 1012

1.2× 107 8× 108 6.8× 1011 3× 1010 9.7× 1013

4.8× 107 3.7× 109 6× 1012 2.4× 1011 1.6× 1015

Table 6.1: Fill-in and flops required to solve linear systems. A fill reducing
permutation such as one computed by symamd can significantly reduce the space
and time required to solve linear systems. However, for large problems, Gaussian
elimination is still not feasible.

use the Cholesky factorization of the matrix for linear solves after applying

symamd [6] for a fill-reducing permutation. We save the Cholesky factor for a

given habitat patch while computing the resistance between it and all other

habitats.

Consider the n by n symmetric positive definite system of equations Ax = b,

where n is large and A is sparse. The Cholesky factors of A are computed:

A = RT R. Typically, R is much less sparse than A, due to fill. However,

solving the reordered system (PAP T)(Px) = Pb can result in much less fill, if

P is chosen appropriately [6, 59, 89]. The fill-in limits the largest problem we

can solve. We show the fill and floating point operations required for typical

140

Chapter 6. Landscape Connectivity: An Application in Ecology

Four neighbors per cell
Number of cells Build graph Contract Prune Eff. resistance

250× 103 1.3 1.4 4.3 6.5
1× 106 6.3 7.1 18.7 26.1

12× 106 61.3 56.9 160.3 292.2
48× 106 355.9 310.4 822.9 -

Eight neighbors per cell
Number of cells Build graph Contract Prune Eff. resistance

250× 103 2.6 2.1 6.5 10
1× 106 11.8 9 30 46.3

12× 106 149.2 113.7 325.7 620.7
48× 106 681.9 497.6 1353.5 -

Table 6.2: Time (in seconds) spent in various stages of Circuitscape in sequen-
tial Matlab. The largest problem ran out of memory in the direct solver.

problems that we are interested in solving in table 6.1. The row and column

counts for Cholesky factorization can be computed efficiently without actually

performing the factorization [57].

Optimal Cholesky decomposition of the 2D model problem on a unit square

requires O(n log n) space and O(n3/2) time. Although the space requirements

seem modest asymptotically, they are prohibitive in practice for large problems,

as shown in table 6.1. The number of floating point operations for the largest

problems is also prohibitive. The analysis for the 2D model problem holds for

matrices generated from landscapes represented as 2D grids.

For our parallel implementation with Star-P, we use preconditioned conju-

gate gradient to solve the linear systems [14]. Conjugate gradient is an iterative

method. Its convergence can be sped up significantly by using an effective pre-

141

Chapter 6. Landscape Connectivity: An Application in Ecology

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

Number of cells

T
im

e
in

 s
ec

on
ds

1 processor
8 processors
14 processors

Figure 6.7: The effective resistance computation scales well. This is an indi-
cator of the underlying combinatorial preconditioner working well.

conditioner. Instead of solving Ax = b, one can solve M−1Ax = M−1b. The

speed of convergence of conjugate gradient depends on the condition number of

A. Hence, convergence can be accelerated if M−1 has a smaller condition num-

ber than A. The Hypre library [47] provides several robust high performance

iterative methods and preconditioners. We use algebraic multigrid (AMG) as

a preconditioner for conjugate gradient. Since AMG is a combinatorial pre-

conditioner, it does not require any extra information about the problem being

solved. Hypre includes BoomerAMG [69], a parallel implementation of algebraic

multigrid.

142

Chapter 6. Landscape Connectivity: An Application in Ecology

Four neighbors per cell
Number of cells Build graph Contract Prune Eff. resistance

250× 103 1.4 1.6 7.4 1.9
1× 106 5.2 6.0 23.9 9.0

12× 106 43.2 52.2 185.0 76.9
48× 106 184.7 219.6 767.3 354.3

Eight neighbors per cell
Number of cells Build graph Contract Prune Eff. resistance

250× 103 3.3 2.1 10.1 1.8
1× 106 11.5 7.4 33.1 7.5

12× 106 114.4 68.5 283.6 68.0
48× 106 423.1 281.0 1193.0 338.5

Table 6.3: Time (in seconds) spent in various stages of Circuitscape in Star-
Pwith 8 processors.

6.4 Performance of Circuitscape in parallel

We perform a comprehensive performance analysis using the Riverside County

landscape (figure 6.3) at several resolutions. Table 6.2 shows the time spent

in different stages of the computation within Circuitscape, when running se-

quentially in Matlab. Tables 6.3 and 6.4 show the performance when the

computation is performed in parallel using 8 and 14 processors1.

The time to solution scales well. Scaling results for the most time consuming

step (computing effective resistance) on the largest problem are presented in

figure 6.7

1All computations were performed on a shared memory 16 core Opteron computer with
64G of RAM.

143

Chapter 6. Landscape Connectivity: An Application in Ecology

Four neighbors per cell
Number of cells Build graph Contract Prune Eff. resistance

250× 103 1.3 1.7 6.9 1.2
1× 106 3.6 5.3 18.9 5.5

12× 106 32.4 48.5 160.6 61.0
48× 106 139.9 205.4 669.6 287.5

Eight neighbors per cell
Number of cells Build graph Contract Prune Eff. resistance

250× 103 3.2 2.2 8.7 1.3
1× 106 8.0 6.7 26.9 4.9

12× 106 69.8 60.9 237.1 57.7
48× 106 301.3 270.9 1037.4 245.0

Table 6.4: Time (in seconds) spent in various stages of Circuitscape in Star-
Pwith 14 processors.

6.5 Conclusion

We described our improvements to Circuitscape, which allow it to solve

very large problems. Originally, Circuitscape took a few hours to solve small

problems and a few days to solve moderate sized problems (landscapes with ap-

proximately 1 million cells). Our speedups result from using the graph toolbox

(GAPDT) for graph computations, Star-P for scalability and parallelization,

and state of the art linear solvers to compute effective resistance, along with

basic vectorization of the rest of the sequential code. Our improvements allow

us to solve the largest problems within a few minutes.

We believe that our enhancements will dramatically improve the productiv-

ity of users of Circuitscape, allowing them to model landscapes at a resolution

144

Chapter 6. Landscape Connectivity: An Application in Ecology

fine enough for the results to be realistic. This will lead to a better understand-

ing of landscape ecology — in particular gene flow, and corridor identification

for conservation.

145

Part II

Productivity

146

Chapter 7

Design of Experiments in
Software Engineering

7.1 Motivation

Programming languages have evolved a great deal over the years. It is

generally agreed upon that advances in programming language design have led

to vast improvements in programmer productivity. There is very little objective

evidence to support this claim. This is partly because there is very little data on

programmer workflows, and partly because programmer productivity depends

upon a number of factors, many of which are hard to quantify. This chapter

describes a framework for conducting experiments and the nature of data to be

collected.

Designers of computer hardware and software have been concerned about

programmer productivity ever since the early years of computing. Backus’ opti-

147

Chapter 7. Design of Experiments in Software Engineering

mizing FORTRAN compiler [9] was perhaps the earliest breakthrough to result

in a significant improvement of programmer productivity. Designers of pro-

gramming languages give a lot of thought to programmer productivity, making

it a widely studied topic in computer science, if only informally. The discipline

of software engineering has studied programmer productivity extensively since

the early years of computing [123].

Several studies [15, 61] have repeatedly emphasized the need for experimen-

tation and data collection in measuring programmer productivity. Only with

data and a focus on experimentation can we resolve questions about effective

design of computer hardware and programming languages. Recognizing the lack

of programmer data available to those researching programmer productivity, we

are releasing a high quality dataset collected from our classroom experiments.

We describe in detail the setup of our data gathering process.

A few datasets on software engineering are available through NASA’s defunct

Software Engineering Laboratory [16]. Larger samples of data would allow

validation of widely held beliefs about programming. Indeed, good quality data

collection might even suggest good theories that escape our attention due to

lack of data. Often in science, well thought out experiments and careful data

collection have led to better theories themselves.

148

Chapter 7. Design of Experiments in Software Engineering

One common hurdle when designing an experiment to gather productivity

data is the scope of the data collection and the means by which it should be

achieved. Data collection from such experiments needs to meet two conflicting

objectives:

1. Collect data on everything that can possibly be measured in order to train

models yet to be developed.

2. Keep the data collection process simple and robust without affecting a

programmer’s workflow.

In our experiments, we balance the two objectives, collecting enough data to

allow a researcher to extract unobserved variables, while not distracting the

programmer’s workflow.

7.2 UCSB classroom experiments and replay

We describe two experiments using the Applied Parallel Computing class

at UCSB (CS240A), in 2004 and 2006. The class is particularly challenging

because students are exposed to a new style of programming. The students

learnt to program parallel computers using MPI [44] and UPC [36]. MPI, the

Message Passing Interface is a library that allows processors to communicate by

149

Chapter 7. Design of Experiments in Software Engineering

exchanging messages. Unified Parallel C (UPC), on the other hand has native

parallel constructs.

We believe that instrumentation of any programmer activity should be as

non-intrusive as possible. In the 2004 class, we used questionnaires as well as

automatic classification. Our positive experience with automatic classification

in 2004 encouraged us against using questionnaires in the 2006 class. We discuss

the issue of questionnaires vs. automatic classification in section 7.3.

The key feature that distinguishes our classroom experiments at UCSB from

other such experiments is the replay. The replay involves rerunning interme-

diate versions of a programmer’s codes to extract information not gathered by

the instrumentation tools. In a perfect world, where instrumentation tools are

perfect, such replays may be unnecessary. On the other hand, the experiment

design can be much simpler if the focus is on ensuring accurate replays of pro-

grammer experience at a later time.

There may be a variety of reasons to replay programmer experience. For

instance, a researcher may need data which was not gathered by the instru-

mentation tools. Sometimes, the instrumentation tools may be buggy and may

not capture all the data that was intended to be captured. In both our exper-

iments, we found the replay to be a valuable tool. The replay also makes the

experiments repeatable, which is a desirable feature for scientific experiments.

150

Chapter 7. Design of Experiments in Software Engineering

7.2.1 The 2004 experiment

The 2004 classroom experiment was a pilot. The lessons we learnt from

it were used in the 2006 experiment to make the data collection process more

robust. In 2004, we were not sure about the kind of data to be collected in

such an experiment. Our goal was to collect at least as much data as would be

needed to go back and replay each student’s experience.

Four homeworks were assigned in this class. All of them were instrumented

with the UMD instrumentation tools [127] to capture timestamps, compile times

and runtimes. We integrated CVS with the Makefiles provided to the students,

so that a source snapshot would be captured every time a student compiled

their program.

One of the homeworks the students programmed was a parallel sort. The

parallel sort was programmed as a module for an early prototype of Star-P [76].

As a result, all students used a common harness and common Makefiles. After

the class was over, we replayed every single compile for every student in the

class and ran it. The consistency provided by the harness make this possible.

However, not all run specifics were captured, such as number of processors used,

the data generator used by the students, compute time (not total time), and

correctness.

151

Chapter 7. Design of Experiments in Software Engineering

We used proxies for run specific parameters. We tested every correct compile

on a problem of 10 million elements with 8 processors. The input to the sorting

algorithm was a random vector generated by Star-P. All results were compared

against Star-P’s sort for correctness. We captured the time required to sort the

input, not timing Star-P startup time, data generation time or validation time.

The replay took one night of computing time on a 32-processor departmental

cluster and generated 20 gigabytes of executables.

As a result, we obtained a good insight into the development process the

students experienced. It is not the exact student experience, but quite close.

One of the benefits of the replay approach using a common input for all runs

is that any two runs may be directly compared. Although simplistic, such an

approach may give insight into a programmer’s thought process and priorities

as they develop a program.

7.2.2 The 2006 experiment

The goal of our 2006 classroom experiment was to improve upon the methods

used in the 2004 experiment and obtain higher quality data. We also wanted to

compare two different programming models in this class. Since the replay had

proven to be extremely useful in recovering data from the earlier experiment,

152

Chapter 7. Design of Experiments in Software Engineering

our 2006 experiment was designed from the ground up with the requirement of

allowing an accurate replay.

The main shortcoming of the 2004 experiment was the lack of precise run

time parameters used by the students. Our experiments also convinced us that

providing well designed harnesses to students enhanced their educational expe-

rience, allowing them to focus solely on the computational problem.

The students programmed three homeworks in this experiment. We collected

data from two of these. Homework 1 was an introduction and hence it captures

novice programmers learning MPI and UPC. The students programmed the

power method with dense matrices in MPI and UPC. For homework 2, the

students programmed the game of Life. Half the class used MPI and the other

half used UPC.

The students were provided with harnesses for every homework. These har-

nesses were written in C and UPC and provided the following components:

1. Sequential Matlab code

2. Makefiles

3. Supporting code including main()

4. Data generators

5. Validators for specific problems

6. Harness version control

153

Chapter 7. Design of Experiments in Software Engineering

The students were required to program just one function for each homework.

Several data generators were provided, with validators for several problems sizes

to allow for debugging. The harness version control ensured that all students

used the latest available version of the harness, as bugs were fixed.

The students used a commodity cluster to program homework 1. Since this

was an introductory homework, full credit was awarded for just getting the right

answer. The students developed their game of life codes for homework 2 on 8

processor SMP nodes on Datastar1, an IBM SP-based computer at the San

Diego Supercompute Center. Towards the end of the homework, a challenge

problem was announced, which the students had to solve on four 8-way nodes

or 32 processors in all.

The harnesses captured all relevant run time information to allow a complete

replay if needed (in addition to the UMD instrumentation tools):

1. Number of processors

2. Data generator

3. Problem size

4. Compute time

5. Correctness

1Datastar has 176 (8–way) P655+ and 7 (32–way) P690 compute nodes. The 8-way nodes
have 16 GB, while the 32-way nodes have 128 GB of memory. DataStar nodes are suitable
for both shared-memory and message-passing programming models, as well as the mixture of
the two.

154

Chapter 7. Design of Experiments in Software Engineering

It turned out that the compute time was not captured accurately due to a bug

in the tools. The replay came to the rescue. The replay took 900 processor

hours of compute time on Datastar, generating 20G of executables.

7.3 Questionnaires vs. automatic classification

of 2004 data

Experiments measuring productivity in the past have relied heavily upon

using questionnaires. Questionnaires can be set up in a variety of ways. The

classroom studies in HPCS experimented with a variety of questionnaires:

1. Online Compile-time questionnaires: Programmers are asked to pick

a reason for compiling their code from a list of choices. The 2004 class

questionnaire is described in table 7.1.

2. Offline hourly questionnaires: These rely on the observation that the

transitions between high level programming states (such as debugging,

optimization) occur at a much lower frequency than compiles/runs. Pro-

grammers simply maintain an hourly log of their activities.

3. Offline daily questionnaires: These are similar to the hourly question-

naires, but programmers are asked to keep a log of their activities daily.

155

Chapter 7. Design of Experiments in Software Engineering

The kind of questions asked, and the detail in which they should be answered

vary greatly depending on the design of the experiment.

We believe that we get the most accurate data if the programmer is not

burdened with extra tasks. Anything that a programmer might not do typically

while programming is a distraction, and can affect the quality of data being

gathered. Ideally, data collection tools should be completely non-intrusive.

This approach shifts the burden of data collection from the programmer to

the experiment designer. The experiment designer must ensure that all the right

kinds of data are gathered during the course of the experiment to allow for any

subsequent modeling purposes.

Our 2004 experiment used both questionnaires and automatic data collec-

tion. The questionnaire posed a multiple-choice question at every program

compile. The students picked the activity that most accurately described the

task they were performing.

Table 7.1 gives the questionnaire’s multiple choice possibilities as well as the

heuristics that our automatic deduction used to guess each choice. More than

one heuristic might match at any point in time. For instance, a programmer

may get a compile time error while trying to parallelize their code, or a run

time error when tuning their code.

156

Chapter 7. Design of Experiments in Software Engineering

Questionnaire choice Heuristics for deduction
Experimenting with compiler If the lines of code remains constant between ver-

sions and the number of MPI calls is less than 10,
the programmer is experimenting with the com-
piler.

Adding serial functionality If there are still fewer than 10 MPI calls but the
number of lines of code changes between versions,

Parallelizing If the number of MPI calls changes between ver-
sions, the programmer is adding sequential func-
tionality.

Performance tuning If the running time decreases from one version to
the next, it is safe to conclude that the program-
mer is optimizing the program.

Compile time error If a compile fails, than it is a compile time error.
Run time error If the program crashes or gives an incorrect result,

it is a run time error.

Table 7.1: The compile-time questionnaire and heuristics used to automatically
deduce reasons for every compile.

We now make some simple comparisons between programmer reported data

and automatically classified data. This particular experiment gathered data

from 11 programmers. For the purpose of this study, we will assume that a pro-

grammer remains in the same state if they report the same activity repeatedly

for some period of time.

The simplest test checks for programmers who did not report anything; that

is, they reported the same reason for every single compile. It turns out that

3 out of the 11 programmers in the study reported that they were always in

the same state through the duration of the experiment. In fact 7 out of the 11

programmers report to have changed states 10 times or less. However, looking

157

Chapter 7. Design of Experiments in Software Engineering

Table 7.2: Self-reported versus automatic questionnaires.

at the data, all programmers have had more than 20 compile time and run-time

errors. Clearly, there is a mismatch between the reported and the automatically

classified data.

We also notice that programmers were either not in a position to guess their

true state, or else guessed it incorrectly. Two examples from the data help

illustrate this claim.

1. From the data, programmer 10 reported all the state changes very care-

fully. Despite this, at timestamp 1082800983, the programmer reported

“Runtime error” as the reason for the compilation. However, looking at

the run time data, we notice that at the previous compile, at timestamp

1082800923, the compile itself failed. Only one line was changed since

then, and then the compile succeeded. There was a minor error with the

158

Chapter 7. Design of Experiments in Software Engineering

source code which caused a failed compilation. The correct reason for the

compile at timestamp 1082800983 is this failed compilation, but the stu-

dent chose to report it as a runtime error, even though the code could not

be run. This is an example of a programmer misjudging the true state.

2. For programmer 4, at timestamp 1082886139, the reported reason for the

compile was “Performance Tuning” even though the programmer did not

get any correct run previously. This compile was the 21st compile for the

programmer, out of a total of 173 compiles, and thus occurred early in

the workflow. The correct reason for this compile could be “Run time

error” or “Adding serial functionality”. This is an example of a situation

in which the programmer did not have the required insight to judge the

true state. At the time of development, the programmer could not have

known that there would be 173 compiles in total. This makes it difficult

for the programmer to judge the true activity taking place. At the end of

the development, a complete record of the developer workflow allows us

to infer the true state using the overall information, something that the

programmer could not possibly do.

There is also the larger issue of different programmers interpreting the mean-

ing of the questionnaires differently. An automatic classification method uses

159

Chapter 7. Design of Experiments in Software Engineering

the same heuristics for all data, so that cross–programmer comparison is not

only possible but also meaningful.

7.4 Visualization and observations from 2006

data

We report some of the data from the classroom experiments, and point

out some interesting features in the data. Some observations agree with our

intuition, while others do not have an intuitive explanation. These observations

are made possible through our detailed data collection and the replay facility.

The figures in tables 7.3 and 7.4 are a visualization of the data collected in the

first program in 2006. This is the first time these programmers were exposed to

a parallel programming language. Hence, these workflows should be considered

to be novice programmer workflows. All programmers used both, UPC and

MPI. We only report data for those programmers who correctly implemented

the program in both programming languages.

The visualization represents student activity segmented into thirty minute

chunks. For each chunk, the color denotes the best activity observed during

that interval. The ranking of the activities is as follows: successful run (green)

> failed run (orange) > successful compile (yellow) > failed compile (gray).

160

Chapter 7. Design of Experiments in Software Engineering

Table 7.3: MPI and UPC activities in half hour intervals (students 1, 2, 4).
Each half hour interval is represented by a box. The ordering of activities is
as follows: successful run (green) > failed run (orange) > successful compile
(yellow) > failed compile (gray).

Often programmers use incremental compilation as a tool to ensure that their

programs compile, even though there isn’t enough functionality implemented

for a run. The starting and stopping times are common across all programmers,

allowing direct comparison of any pair of workflows.

The first striking observation is that the amount of effort is asymmetric

across programming languages for all programmers. Some programmers seem

to have spent more time working with MPI, others with UPC. This may be ex-

pected since experiences with the first language may allow reuse of knowledge

and code for the second language. Novice programmers seem to prefer MPI to

start writing their first parallel programs. There could be any number of rea-

sons for this bias; one of them being the availability of plenty of documentation

for MPI, and very little for UPC. We are unable to draw any concrete conclu-

sions due to the small sample size, but it is clear that the programmers react

161

Chapter 7. Design of Experiments in Software Engineering

Table 7.4: MPI and UPC activities in half hour intervals (students 5, 7, 10).
Each half hour interval is represented by a box. The ordering of activities is
as follows: successful run (green) > failed run (orange) > successful compile
(yellow) > failed compile (gray).

differently to the two languages. For instance, it seems that programmers 1 and

7 expended more effort on UPC, while programmer 5 expended more effort on

MPI and programmers 2, 4 and 10 spent an equal amount of effort on both

languages.

The programmers were only required to get their programs to run correctly

for this assignment. Even though performance was not their primary target,

we observe some interesting performance differences across programmers and

languages. Table 7.5 reports the performance for successful programmers. There

is one concrete observation to be made from this table. Peak UPC performance

is comparable to peak MPI performance, but the variance in MPI performance

is much larger than UPC performance. The fact that three programmers achieve

162

Chapter 7. Design of Experiments in Software Engineering

MPI UPC
Student Min time Max time Min time Max time

1 44.3 597 1020.7 1030
2 153 186.7 349.7 349.7
4 1 243 53 67
5 168.6 1679.3 55.7 56.1
7 1004.9 1004.9 994.7 994.7
10 46.8 156.1 56.7 57.3

Table 7.5: Performance of every successful programmer on assignment 1 in
2006.

close to the best performance in UPC suggests that UPC code does not need

to be optimized as much as MPI code.

7.5 Conclusion

We provide a generalized framework for experiments to measure programmer

productivity. Our experimental design relies on simple, effective instrumenta-

tion tools, and captures as much data as is needed to allow for accurate replay.

The replay allows a researcher to gather data specific to the model they are

working with. Repeatability is a key ingredient of a scientific experiment. We

achieve repeatability through replay. We also release the data gathered from

our classroom experiments in order to address the lack of good quality data,

and hope this will encourage other researchers to do the same.

163

Chapter 8

Timed Markov Models of
Programmer Productivity

8.1 Introduction

One of the metrics programmers care about when solving a problem on a

computer is the time to solution. The clock starts ticking from the moment a

programmer starts thinking of the problem and stops when problem is solved.

For the sake of simplicity, we consider three major phases in any problem solv-

ing process: formulation, programming and execution. The solution can be

obtained faster by reducing the time spent in any of these phases. The formu-

lation phase occurs before any code is written. It captures the creative thought

process, and again, for simplicity, we will assume it to be independent of the

programming and execution phases. Program execution is very much a func-

tion of the computer used to run the program. Traditionally, this has been

164

Chapter 8. Timed Markov Models of Programmer Productivity

the focus of much research and development in high performance computing.

Increasingly, more attention is being focused on the programming phase.

Higher level languages such Matlab are often thought to be more produc-

tive to program in than Fortran or C. Partitioned global address space (PGAS)

languages are believed to be easier to use than message passing environments.

There are several other widely held beliefs about programming and productiv-

ity: a well designed IDE might be more productive than command line tools,

a debugger might be more productive than debugging by printing, interactive

programming environments might allow for quicker development than compiled

languages, and so on.

Such hypotheses are often anecdotal; it is often hard to either prove them

or disprove them. It should be possible to confirm or refute hypotheses about

programmer productivity with a reasonable model of programming workflows

coupled with experimental evidence. Quantitative analysis is desirable, but very

hard to get.

We believe that our work can lead to an ability to choose a programming

environment based on quantitative evaluations instead of anecdotal evidence.

Several studies [28, 70, 99] compare different software engineering processes and

programming environments in a variety of ways, mostly qualitative.

165

Chapter 8. Timed Markov Models of Programmer Productivity

Programmers go through an identifiable, repeated process when develop-

ing programs, which can be characterized by a directed graph workflow. Timed

Markov models or timed Markov processes (TMM) are one way to describe such

directed graphs in a quantifiable manner. We describe a simple TMM which

captures the workflows of. Using our model and tools, we compare the work-

flows of graduate students programming the same assignment in C/MPI [44]

and UPC [36]. This would not be possible without a quantitative model and

measurement tools.

8.2 Timed Markov processes

The process of software development iterative and probabilistic. It is iter-

ative in the sense that a programmer often repeats a sequence of steps in the

software development process: edit, compile, launch test run, for example. It is

probabilistic in that the times in each of the steps of the process can vary, and

the number of times a cycle will be repeated before the programmer can move

on to the next phase is unpredictable. A timed Markov process can model both

aspects. Smith, Mizell, Gilbert and Shah describe the first application of such

models to software development [114]. Funk, Gilbert, Mizell and Shah report

further development of the modeling tools [53].

166

Chapter 8. Timed Markov Models of Programmer Productivity

State A

State B

State C

pro
b(B

|A)
 /

tim
e(A

|B)

prob(C|A) / time(A|C)

Figure 8.1: A timed Markov process

A timed Markov process is a Markov process, augmented with dwell times

for state transitions. Each state transition has associated with it, a probability

of transition, and a dwell time. Timed Markov processes closely resemble sig-

nal flow graphs [71], for which well known methods exist to estimate time to

completion. Iterative design processes and software development processes have

been studied using similar techniques [77, 115].

In Figure 8.1, prob(B|A) is the probability of transitioning to state B given

that the process is now in state A. time(A|B) is the dwell time spent in state

A given that the next state transitioned to is B. prob(C|A), which would equal

1 − prob(B|A) in this example, is the probability of transitioning to state C

given that the process is now in state A.

167

Chapter 8. Timed Markov Models of Programmer Productivity

Figure 8.2: Lone programmer workflow

8.3 Timed Markov models of programmer work-

flows

In our earlier work [114], we hypothesize a simple timed Markov model of

a researcher developing a new application. It represents our assumption that

the researcher begins by formulating a new algorithm for solving the problem of

interest, and then writes a program implementing the algorithm. Following that,

the researcher enters a correctness-debugging loop, around which the process

cycles until the program is deemed to be free of programming errors. Next

is a performance-tuning loop, which cycles until the program has been tuned

168

Chapter 8. Timed Markov Models of Programmer Productivity

enough that it gets adequate performance for large problems to be run on the

HPC system. This is the workflow shown in Figure 8.2. All times in this model

may be random variables:

• Tf is the time taken to formulate a new approach.

• Tp is the time necessary to implement the new algorithm in a program.

• Tc is the compile time.

• Tt is the time necessary to run a test case during the debugging phase.

• Td is the time the programmer takes to diagnose and correct the bug.

• Tr is the execution time for the performance tuning runs.

• To is the time the programmer takes to identify the performance bottleneck

and program an intended improvement.

• pp is the probability that debugging reveals a need to redesign the program.

• pd is the probability that more debugging is necessary.

• po is the probability that more performance optimization is necessary.

• qp, qd, and qo are 1pp, 1pd, and 1− po, respectively.

169

Chapter 8. Timed Markov Models of Programmer Productivity

This model can also be used to describe the workflow of graduate students

programming homeworks in a parallel computing class. In our 2004 classroom

experiment, we instrumented the programs and collected workflow data as de-

scribed in chapter 7. We then fit the collected data to a TMM. While fitting

the experimental data to the model, we discovered that in addition to the tran-

sitions described above, there were two more transitions. A programmer may

introduce or discover a bug while attempting to optimize the program. As a

result, there is a transition from the Run state to the Debug state. Sometimes,

the final run may not be successful, perhaps because of a failed attempt to

optimize. In such a case, an earlier correct run is treated as the final program

(all the data we present is from programs that were eventually correct). Hence,

there is another transition from Test to Finish. Figure 8.3 shows the result of

our analysis of the 2004 experimental data.

8.4 Comparing UPC and C/MPI workflows

Figure 8.4 shows the workflow of UPC programmers. Figure 8.5 shows that

of C/MPI programmers. These diagrams of the TMMs were prepared using

Mizell’s TMM tool [53]. This is a preliminary analysis with a small sample size

(five programmers using each language). Thus we do not attempt to draw final

170

Chapter 8. Timed Markov Models of Programmer Productivity

Figure 8.3: Fitting data from the 2004 classroom experiment to a timed
Markov model.

conclusions comparing the two languages. However, a number of aspects of these

TMMs seem encouraging as regards the feasibility of this type of quantitative

analysis.

First, the fitted transition times and probabilities from the 2006 classroom

experiment are quite similar to those from the 2004 classroom experiment. Not

surprisingly, most (92% to 95%) “test” runs lead back into the debug cycle. We

see that a “test” run is successful 8% of the time for C/MPI and 5% of the time

for UPC; however, in the optimization cycle, 28% of C/MPI runs introduced

new bugs compared to only 24% of UPC runs. It is not clear whether these

171

Chapter 8. Timed Markov Models of Programmer Productivity

START

END

Compile1

 Test

 Debug

Compile2 Optimize

 Run

0.
75
 /
 1
56

0
.
0
5

/

6

1.0 / 763

0.003 / 0.2

0
.
2
4

/

3
2

1.0 / 191

0.
00
3
/
0.
3

1.0 / 271

0.
95
 /
 8
0

1.
0
/
1

1.0 / 69

Figure 8.4: TMM fit to UPC workflow data. Edges representing state transi-
tions are labelled as: probability of transition / dwell time in seconds.

172

Chapter 8. Timed Markov Models of Programmer Productivity

START

END

Compile1

 Test

 Debug

Compile2 Optimize

 Run

0.
7/
18
5.
0

0
.
0
8
/
1
1
.
0

1.0/883.0

0.02/12.0
0
.
2
8
/
4
1
.
0

1.0/278.0

1.
0E
-4
/0
.0
7

1.0/270.0

0.
92
/9
6.
0

1.
0/
1.
0

1.0/68.0

Figure 8.5: TMM fit to C/MPI workflow data. Edges representing state
transitions are labelled as: probability of transition / dwell time in seconds.

differences are significant for this small sample size. A programmer spends

much longer to attempt an optimization (763 seconds for UPC and 883 seconds

for C/MPI) than to attempt to remove a bug (270–271 seconds). The time to

optimize UPC (763 seconds) is smaller that for MPI (883 seconds), suggesting

perhaps that UPC optimization is carried out in a more small-granularity, rapid-

feedback way.

173

Chapter 8. Timed Markov Models of Programmer Productivity

8.5 Conclusion

We believe that programmers go through an identifiable, repeated process

when developing programs, which can be characterized by a directed graph

model such as timed Markov models.

We successfully gathered data and fit it to timed Markov models twice, in our

2004 and 2006 classroom experiments. The replay of programmer experience

offline was one of the most important aspects of the data gathering process.

The timed Markov models clearly indicate the most time intensive parts of

the development cycle, quantitatively confirming our intuition — programmers

spend most of their time debugging, and once they get a correct program, tuning

it for performance is even more difficult. Our data also suggests, in this context,

that programmers may introduce slightly fewer bugs in UPC programs, and find

it easier to optimize them, as compared to C/MPI programs.

Clearly, this is only the beginning. A lot more data needs to be collected

before any comparisons can be in a meaningful way. Towards this end, we

are building various tools for the community at large. These tools will pro-

vide a general framework for data collection and model construction to study

programmer productivity in a variety of ways.

174

Bibliography

[1] M. Adams and J. W. Demmel. Parallel multigrid solver for 3d unstruc-
tured finite element problems. In Supercomputing ’99: Proceedings of the
1999 ACM/IEEE conference on Supercomputing (CDROM), page 27, New
York, NY, USA, 1999. ACM Press.

[2] F. Adriaensen, J. P. Chardon, G. D. Blust, E. Swinnen, S. Villalba,
H. Gulinck, and E. Matthysen. The application of ’least-cost’ modelling as
a functional landscape model. Landscape and Urban Planning, 64(4):233–
247, Aug 2003.

[3] V. Aggarwal, F. Gibou, and J. R. Gilbert. Effective combinatorial precon-
ditioners for non-graded finite difference octree grids. Technical report,
UC Santa Barbara, 2007.

[4] A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1974.

[5] P. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal solvers within
the PARASOL environment. In PARA, pages 7–11, 1998.

[6] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum
degree ordering algorithm. SIAM Journal of Matrix Analysis and Appli-
cations, 17(4):886–905, 1996.

[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[8] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for
shuffle-exchange network and PRAM. IEEE Transactions on Computers,
36(10):1258–1263, 1987.

175

http://doi.acm.org/10.1145/331532.331559
http://doi.acm.org/10.1145/331532.331559
http://dx.doi.org/10.1016/S0169-2046(02)00242-6
http://dx.doi.org/10.1016/S0169-2046(02)00242-6
http://www.amazon.com/exec/obidos/ASIN/0201000296
http://www.amazon.com/exec/obidos/ASIN/0201000296
file:citeseer.ist.psu.edu/article/amestoy98multifrontal.html
file:citeseer.ist.psu.edu/article/amestoy98multifrontal.html
http://dx.doi.org/10.1137/S0895479894278952
http://dx.doi.org/10.1137/S0895479894278952
http://www.netlib.org/lapack/lug/
http://portal.acm.org/citation.cfm?id=32414&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=32414&dl=ACM&coll=portal

Bibliography

[9] J. W. Backus. The FORTRAN automatic coding system. In Proceedings
of the Western Joint Computing Conference, pages 188–198, 1957.

[10] D. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh, K. Madduri,
B. Mann, and T. Meuse. HPCS scalable synthetic compact applications
#2. version 1.1.

[11] D. A. Bader. High-performance algorithm engineering for large-scale
graph problems and computational biology. In S. E. Nikoletseas, editor,
WEA, volume 3503 of Lecture Notes in Computer Science, pages 16–21.
Springer, 2005.

[12] D. A. Bader, K. Madduri, J. R. Gilbert, V. Shah, J. Kepner, T. Meuse, and
A. Krishnamurthy. Designing scalable synthetic compact applications for
benchmarking high productivity computing systems. Cyberinfrastructure
Technology Watch, Nov 2006.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
NAS parallel benchmarks. The International Journal of Supercomputer
Applications, 5(3):63–73, Fall 1991.

[14] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. SIAM, Philadelphia, PA, 1994.

[15] V. R. Basili. The role of experimentation in software engineering: past,
current, and future. In ICSE ’96: Proceedings of the 18th international
conference on Software engineering, pages 442–449, Washington, DC,
USA, 1996. IEEE Computer Society.

[16] V. R. Basili, F. E. McGarry, R. Pajerski, and M. V. Zelkowitz. Lessons
learned from 25 years of process improvement: the rise and fall of the
NASA software engineering laboratory. In ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, pages 69–79, New
York, NY, USA, 2002. ACM Press.

[17] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo.
Support-graph preconditioners. SIAM Journal of Matrix Analysis and
Applications, 27(4):930–951, 2006.

176

http://community.computerhistory.org/scc/projects/FORTRAN/paper/BackusEtAl-FortranAutomaticCodingSystem-1957.pdf
http://www.highproductivity.org/SSCABmks.htm
http://www.highproductivity.org/SSCABmks.htm
http://dx.doi.org/10.1007/11427186_3
http://dx.doi.org/10.1007/11427186_3
http://www.ctwatch.org/quarterly/articles/2006/11/designing-scalable-synthetic-compact-applications-for-benchmarking-high-productivity-computing-systems/
http://www.ctwatch.org/quarterly/articles/2006/11/designing-scalable-synthetic-compact-applications-for-benchmarking-high-productivity-computing-systems/
file:citeseer.ist.psu.edu/bailey95nas.html
file:citeseer.ist.psu.edu/bailey95nas.html
http://www.netlib.org/linalg/html_templates/Templates.html
http://www.netlib.org/linalg/html_templates/Templates.html
http://www.netlib.org/linalg/html_templates/Templates.html
http://doi.ieeecomputersociety.org/10.1109/ICSE.1996.10002
http://doi.ieeecomputersociety.org/10.1109/ICSE.1996.10002
http://doi.acm.org/10.1145/581339.581351
http://doi.acm.org/10.1145/581339.581351
http://doi.acm.org/10.1145/581339.581351
http://dx.doi.org/10.1137/S0895479801384019

Bibliography

[18] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo.
Support-graph preconditioners. SIAM Journal of Matrix Analysis and
Applications, 27(4):930–951, 2006.

[19] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley. An updated set of Basic Linear Alge-
bra Subprograms (BLAS). ACM Transactions on Mathematical Software,
28(2):135–151, June 2002.

[20] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha. A comparison of sorting algorithms for the connection
machine CM-2. In Proceedings of the third annual ACM symposium on
Parallel algorithms and architectures, pages 3–16. ACM Press, 1991.

[21] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7:448–
460, August 1973.

[22] E. G. Boman and B. Hendrickson. Support theory for preconditioning.
SIAM Journal of Matrix Analysis and Applications, 25(3):694–717, 2003.

[23] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial:
second edition. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

[24] G. S. Brodal and R. Fagerberg. Funnel heap – A cache oblivious priority
queue. In Proceedings of the 13th International Symposium on Algorithms
and Computation, pages 219–228. Springer-Verlag, 2002.

[25] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-oblivious
sorting algorithm. In L. Arge, G. F. Italiano, and R. Sedgewick, editors,
Proceedings of the Sixth Workshop on Algorithm Engineering and Exper-
iments and the First Workshop on Analytic Algorithmics and Combina-
torics, pages 4–17. SIAM, 2004.

[26] S. V. Browne, J. J. Dongarra, S. C. Green, K. Moore, T. H. Rowan, and
R. C. Wade. Netlib Services and Resources. Oak Ridge, TN, USA, 1994.

[27] J. M. Calabrese and W. F. Fagan. A comparison-shopper’s guide to con-
nectivity metrics. Frontiers in Ecology and the Environment, 2(10):529–
536, Dec 2004.

177

http://dx.doi.org/10.1137/S0895479801384019
http://doi.acm.org/10.1145/567806.567807
http://doi.acm.org/10.1145/567806.567807
http://doi.acm.org/10.1145/113379.113380
http://doi.acm.org/10.1145/113379.113380
http://dx.doi.org/10.1137/S0895479801390637
http://www.llnl.gov/casc/people/henson/mgtut/welcome.html
http://www.llnl.gov/casc/people/henson/mgtut/welcome.html
http://portal.acm.org/citation.cfm?id=646345.689897
http://portal.acm.org/citation.cfm?id=646345.689897
http://doi.acm.org/10.1145/1227161.1227164
http://doi.acm.org/10.1145/1227161.1227164
http://citeseer.ist.psu.edu/browne94netlib.html
http://www.esajournals.org/esaonline/?request=get-abstract&issn=1540-9295&volume=002&issue=10&page=0529
http://www.esajournals.org/esaonline/?request=get-abstract&issn=1540-9295&volume=002&issue=10&page=0529

Bibliography

[28] B. L. Chamberlain, S. J. Deitz, and L. Snyder. A comparative study
of the NAS MG benchmark across parallel languages and architectures.
Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), 2000.

[29] T. F. Chan, J. R. Gilbert, and S.-H. Teng. Geometric spectral parti-
tioning. Technical Report CSL-94-15, Palo Alto Research Center, Xerox
Corporation, 1994.

[30] D. Chen and S. Toledo. Vaidya’s preconditioners: Implementation and ex-
perimental study. Electronic Transactions on Numerical Analysis, 16:30–
49, 2003.

[31] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algo-
rithm 8xx: Cholmod, supernodal sparse cholesky factorization and up-
date/downdate. Technical Report TR-2006-005, University of Florida,
2006. Submitted to ACM Transactions on Mathematical Software.

[32] R. Choy and A. Edeleman. Parallel Matlab survey, 2001.

[33] R. Choy and A. Edelman. Parallel MATLAB: doing it right. Proceedings
of the IEEE, 93:331–341, Feb 2005.

[34] E. Cohen. Structure prediction and computation of sparse matrix prod-
ucts. Journal of Combinatorial Optimization, 2(4):307–332, 1998.

[35] G. Cong and D. A. Bader. The Euler tour technique and parallel rooted
spanning tree. In ICPP ’04: Proceedings of the 2004 International Confer-
ence on Parallel Processing (ICPP’04), pages 448–457, Washington, DC,
USA, 2004. IEEE Computer Society.

[36] T. U. Consortium. UPC Language Specifications V1.2, May 2005.

[37] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algo-
rithms. MIT Press, 1990.

[38] T. A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern
multifrontal method. ACM Transactions on Mathematical Software,
30(2):196–199, 2004.

[39] T. A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of
Algorithms 2). Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2006.

178

http://doi.ieeecomputersociety.org/10.1109/SC.2000.10006
http://doi.ieeecomputersociety.org/10.1109/SC.2000.10006
http://citeseer.ist.psu.edu/chan95geometric.html
http://citeseer.ist.psu.edu/chan95geometric.html
http://etna.mcs.kent.edu/vol.16.2003/pp30-49.dir/pp30-49.pdf
http://etna.mcs.kent.edu/vol.16.2003/pp30-49.dir/pp30-49.pdf
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf
http://www.cise.ufl.edu/~davis/techreports/cholmod/tr06-005.pdf
http://www.interactivesupercomputing.com/reference/parallelMatlabsurvey.php
http://dx.doi.org/10.1109/JPROC.2004.840490
http://dx.doi.org/10.1023/A:1009716300509
http://dx.doi.org/10.1023/A:1009716300509
http://dx.doi.org/10.1109/ICPP.2004.72
http://dx.doi.org/10.1109/ICPP.2004.72
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf
http://mitpress.mit.edu/algorithms/
http://mitpress.mit.edu/algorithms/
http://doi.acm.org/10.1145/992200.992206
http://doi.acm.org/10.1145/992200.992206
http://www.ec-securehost.com/SIAM/FA02.html
http://www.ec-securehost.com/SIAM/FA02.html

Bibliography

[40] W. L. DeLano and S. Bromberg. The PyMOL User’s Manual. DeLano
Scientific LLC, San Carlos, CA, USA., 2004.

[41] A. V. der Sluis and H. A. V. der Vorst. The rate of convergence of
conjugate gradients. Numerische Mathematik, 48(5):543–560, 1986.

[42] J. Dongarra, J.R.Bunch, C.B.Moler, and G.W.Stewart. LINPACK User’s
Guide. SIAM, Philadelphia, 1979.

[43] J. J. Dongarra. Performance of various computers using standard linear
equations software in a FORTRAN environment. SIGARCH Computer
Architecture News, 16(1):47–69, 1988.

[44] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A message pass-
ing standard for MPP and workstations. Communications of the ACM,
39(7):84–90, 1996.

[45] P. G. Doyle and J. L. Snell. Random walks and electrical networks. Math-
ematical Association of America, 1984.

[46] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae,
1959.

[47] R. D. Falgout, J. E. Jones, and U. M. Yang. The design and implemen-
tation of hypre, a library of parallel high performance preconditioners.
Design document from the hypre homepage.

[48] M. Fiedler. A property of eigenvectors of non-negative symmetric matrices
and its application to graph theory. Czechoslovak Mathematical Journal,
25:619–632, 1975.

[49] L. Fleischer, B. Hendrickson, and A. Pinar. On identifying strongly con-
nected components in parallel. In IPDPS ’00: Proceedings of the 15
IPDPS 2000 Workshops on Parallel and Distributed Processing, pages
505–511, London, UK, 2000. Springer-Verlag.

[50] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

[51] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005. special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

179

http://www.pymol.org/
http://dx.doi.org/10.1007/BF01389450
http://dx.doi.org/10.1007/BF01389450
http://www.netlib.org/linpack/
http://www.netlib.org/linpack/
http://doi.acm.org/10.1145/44571.44576
http://doi.acm.org/10.1145/44571.44576
http://doi.acm.org/10.1145/233977.234000
http://doi.acm.org/10.1145/233977.234000
http://arxiv.org/abs/math/0001057v1
http://www.llnl.gov/CASC/linear_solvers/pubs/hypre_design_impl_2004.pdf
http://www.llnl.gov/CASC/linear_solvers/pubs/hypre_design_impl_2004.pdf
http://link.springer.de/link/service/series/0558/bibs/1800/18000505.htm
http://link.springer.de/link/service/series/0558/bibs/1800/18000505.htm
http://doi.acm.org/10.1145/367766.368168
http://dx.doi.org/10.1109/JPROC.2004.840301

Bibliography

[52] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, Los Alamitos, CA, USA, 1999. IEEE
Computer Society.

[53] A. Funk, J. R. Gilbert, D. Mizell, and V. Shah. Modelling programmer
workflows with timed Markov models. Cyber Technology Watch, 2006.

[54] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implementation. In D. Kran-
zlmüller, P. Kacsuk, and J. Dongarra, editors, PVM/MPI, volume 3241
of Lecture Notes in Computer Science, pages 97–104. Springer, 2004.

[55] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning:
Implementation and experiments. SIAM Journal of Scientific Computing,
19(6):2091–2110, 1998.

[56] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB:
Design and implementation. SIAM Journal on Matrix Analysis and Ap-
plications, 13(1):333–356, 1992.

[57] J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to
compute row and column counts for sparse Cholesky factorization. SIAM
Journal of Matrix Analysis and Applications, 15(4):1075–1091, 1994.

[58] J. R. Gilbert, S. Reinhardt, and V. Shah. An interactive environment to
manipulate large graphs. In Proceedings of the 2007 IEEE International
Conference on Acoustics, Speech, and Signal Processing, April 2007.

[59] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algo-
rithm. Numerische Mathematik, 50(4):377–404, 1987.

[60] J. R. Gilbert and S.-H. Teng. Matlab mesh
partitioning and graph separator toolbox, 2002.
http://www.cerfacs.fr/algor/Softs/MESHPART/index.html.

[61] R. L. Glass. The realities of software technology payoffs. Communications
of the ACM, 42(2):74–79, 1999.

[62] M. T. Goodrich. Communication-efficient parallel sorting. In Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing, pages
247–256, 1996.

180

http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.814600
http://doi.ieeecomputersociety.org/10.1109/SFFCS.1999.814600
http://www.ctwatch.org/quarterly/articles/2006/11/modelling-programmer-workflows-with-timed-markov-models/
http://www.ctwatch.org/quarterly/articles/2006/11/modelling-programmer-workflows-with-timed-markov-models/
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/euro-pvmmpi-2004-overview.pdf
http://dx.doi.org/10.1137/S1064827594275339
http://dx.doi.org/10.1137/S1064827594275339
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/otherdocs/simax.pdf
http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/otherdocs/simax.pdf
http://dx.doi.org/10.1137/S0895479892236921
http://dx.doi.org/10.1137/S0895479892236921
http://dx.doi.org/10.1007/BF01396660
http://dx.doi.org/10.1007/BF01396660
http://doi.acm.org/10.1145/293411.293481
http://dx.doi.org/10.1137/S0097539795294141

Bibliography

[63] K. Goto and R. van de Geijn. On reducing TLB misses in matrix mul-
tiplication. Technical Report TR-2002-55, University of Texas at Austin,
Department of Computer Science, Nov 2002.

[64] N. Goyal and E. Meiburg. Unstable density stratification of miscible fluids
in a vertical hele-shaw cell: Influence of variable viscosity on the linear
stability. Journal of Fluid Mechanics, 516:211–238, 2004.

[65] D. Gregor and A. Lumsdaine. The parallel BGL: A generic library for
distributed graph computations. In Parallel Object-Oriented Scientific
Computing (POOSC), July 2005.

[66] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition. ACM Transactions on Mathematical
Software, 4(3):250–269, 1978.

[67] K. Hall. An r-dimensional quadratic placement algorithm. Management
Science, 17(3):219–229, Nov 1970.

[68] D. R. Helman, J. JáJá, and D. A. Bader. A new deterministic parallel
sorting algorithm with an experimental evaluation. J. Exp. Algorithmics,
3, 1998.

[69] V. E. Henson and U. M. Yang. BoomerAMG: A parallel algebraic
multigrid solver and preconditioner. Applied Numerical Mathematics,
41(1):155–177, 2002.

[70] L. Hochstein and V. R. Basili. An empirical study to compare two par-
allel programming models. In SPAA ’06: Proceedings of the eighteenth
annual ACM symposium on Parallelism in algorithms and architectures,
New York, NY, USA, 2006. ACM Press.

[71] R. Howard. Dynamic probabilistic systems. John Wiley, New York, 1971.

[72] P. Husbands. Interactive supercomputing. PhD thesis, Massachussetts
Institute of Technology, 1999.

[73] P. Husbands, C. Isbell, and A. Edelman. MITMatlab: A tool for inter-
active supercomputing. In SIAM Conference on Parallel Processing for
Scientific Computing, 1999.

[74] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

181

http://citeseer.ist.psu.edu/goto02reducing.html
http://citeseer.ist.psu.edu/goto02reducing.html
http://dx.doi.org/10.1017/S0022112004000680
http://dx.doi.org/10.1017/S0022112004000680
http://dx.doi.org/10.1017/S0022112004000680
http://www.osl.iu.edu/publications/prints/2005/Gregor:POOSC:2005.pdf
http://www.osl.iu.edu/publications/prints/2005/Gregor:POOSC:2005.pdf
http://doi.acm.org/10.1145/355791.355796
http://doi.acm.org/10.1145/355791.355796
http://links.jstor.org/sici?sici=0025-1909%28197011%2917%3A3%3C219%3AARQPA%3E2.0.CO%3B2-0
http://doi.acm.org/10.1145/297096.297128
http://doi.acm.org/10.1145/297096.297128
http://dx.doi.org/10.1016/S0168-9274(01)00115-5
http://dx.doi.org/10.1016/S0168-9274(01)00115-5
http://doi.acm.org/10.1145/1148109.1148127
http://doi.acm.org/10.1145/1148109.1148127
http://www.amazon.com/Dynamic-Probabilistic-Systems-Markov-Models/dp/0486458709
http://portal.acm.org/citation.cfm?id=929732
http://citeseer.ist.psu.edu/husbands98interactive.html
http://citeseer.ist.psu.edu/husbands98interactive.html
http://links.jstor.org/sici?sici=1061-8600%28199609%295%3A3%3C299%3ARALFDA%3E2.0.CO%3B2-D

Bibliography

[75] Interactive Supercomputing LLC. Star-P Software Development Kit
(SDK): Tutorial and Reference Guide, 2007. version 2.5.

[76] Interactive Supercomputing LLC. Star-P User Guide, 2007. version 2.5.

[77] E. W. Johnson and J. B. Brockman. Measurement and analysis of se-
quential design processes. ACM Transactions on Design Automation of
Electronic Systems, 3(1):1–20, 1998.

[78] G. Kirchoff. Über den durchgang eines elektrischen stromees durch eine
ebene, insbesondere durch eine kreisförmige. Annalen der Physik und
Chemie, 64:497–514, 1845.

[79] D. J. Klein and M. Randic. Resistance distance. Journal of Mathematical
Chemistry, 12(1):81–95, Dec 1993.

[80] N. B. Kotliar and J. A. Wiens. Multiple scales of patchiness and patch
structure: A hierarchical framework for the study of heterogeneity. Oikos,
59(2):253–260, Nov 1990.

[81] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22:79–86, 1951.

[82] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, Oct 1999.

[83] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factor-
ization. In Advances in Neural Information Processing Systems, pages
556–562, 2000.

[84] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users Guide:
Solution of Large Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, 1998.

[85] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Re-
alistic, mathematically tractable graph generation and evolution, using
Kronecker multiplication. In A. Jorge, L. Torgo, P. Brazdil, R. Camacho,
and J. Gama, editors, PKDD, volume 3721 of Lecture Notes in Computer
Science, pages 133–145. Springer, 2005.

[86] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed mem-
ory sparse direct solver for unsymmetric linear systems. ACM Transac-
tions on Mathematical Software, 29(2):110–140, 2003.

182

http://doi.acm.org/10.1145/270580.270581
http://doi.acm.org/10.1145/270580.270581
http://dx.doi.org/10.1007/BF01164627
http://links.jstor.org/sici?sici=0030-1299%28199011%2959%3A2%3C253%3AMSOPAP%3E2.0.CO%3B2-F
http://links.jstor.org/sici?sici=0030-1299%28199011%2959%3A2%3C253%3AMSOPAP%3E2.0.CO%3B2-F
http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html
http://www.nature.com/nature/journal/v401/n6755/abs/401788a0.html
http://citeseer.ist.psu.edu/lee01algorithms.html
http://citeseer.ist.psu.edu/lee01algorithms.html
http://www.caam.rice.edu/software/ARPACK/UG/ug.html
http://www.caam.rice.edu/software/ARPACK/UG/ug.html
http://www.caam.rice.edu/software/ARPACK/UG/ug.html
http://dx.doi.org/10.1007/11564126_17
http://dx.doi.org/10.1007/11564126_17
http://dx.doi.org/10.1007/11564126_17
http://doi.acm.org/10.1145/779359.779361
http://doi.acm.org/10.1145/779359.779361

Bibliography

[87] M. Luby. A simple parallel algorithm for the maximal independent set
problem. In STOC ’85: Proceedings of the seventeenth annual ACM sym-
posium on Theory of computing, pages 1–10, New York, NY, USA, 1985.
ACM Press.

[88] M. Mahr and M. Mauro. Making Science, making Change: Celebrating
five years of research and collaboration in the Yellowstone to Yukon region,
May 2003.

[89] H. M. Markowitz. The elimination form of the inverse and its application
to linear programming. Management Science, 3(3):255–269, Apr 1957.

[90] K. Maschhoff and D. Sorensen. A portable implementation of ARPACK
for distributed memory parallel archituectures. Proceedings of Copper
Mountain Conference on Iterative Methods, Apr 1996.

[91] Mathworks Inc. MATLAB User’s Guide, 2007. version 2007a.

[92] B. McRae. Circuitscape User Manual. Northern Arizona University, 2006.
version 2.2.

[93] B. H. McRae. Isolation by resistance. Evolution, 60(8):1551–1561, 2006.

[94] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Geometric sep-
arators for finite-element meshes. SIAM Journal on Scientific Computing,
19(2):364–386, 1998.

[95] C. Min and F. Gibou. A second order accurate projection method for
the incompressible navier-stokes equations on non-graded adaptive grids.
Journal of Computational Physics, 219(2):912–929, 2006.

[96] J. Nesetril, E. Milkova, and H. Nesetrilova. Otakar Boruvka on minimum
spanning tree problem translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233:3–36, 2001.

[97] Netflix Inc. The Netflix Prize. http://www.netflixprize.com/.

[98] P. Plauger, M. Lee, D. Musser, A. A. Stepanov, and A. Stepanov. C++
Standard Template Library. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2000.

[99] D. Post and R. Kendall. Software project management and quality engi-
neering, practices for complex, coupled multi-physics, massively parallel

183

http://doi.acm.org/10.1145/22145.22146
http://doi.acm.org/10.1145/22145.22146
http://links.jstor.org/sici?sici=0025-1909%28195704%293%3A3%3C255%3ATEFOTI%3E2.0.CO%3B2-S
http://links.jstor.org/sici?sici=0025-1909%28195704%293%3A3%3C255%3ATEFOTI%3E2.0.CO%3B2-S
file:www.caam.rice.edu/~kristyn/cm_writeup.ps
file:www.caam.rice.edu/~kristyn/cm_writeup.ps
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.nceas.ucsb.edu/~mcrae/software/circuitscape.htm
http://dx.doi.org/10.1554/05-321.1
http://link.aip.org/link/?SCE/19/364/1
http://link.aip.org/link/?SCE/19/364/1
http://dx.doi.org/10.1016/j.jcp.2006.07.019
http://dx.doi.org/10.1016/j.jcp.2006.07.019
http://www.ingentaconnect.com/content/els/0012365x/2001/00000233/00000001/art00224
http://www.ingentaconnect.com/content/els/0012365x/2001/00000233/00000001/art00224
http://www.ingentaconnect.com/content/els/0012365x/2001/00000233/00000001/art00224
http://www.amazon.com/Standard-Template-Library-P-J-Plauger/dp/0134376331
http://www.amazon.com/Standard-Template-Library-P-J-Plauger/dp/0134376331
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf

Bibliography

computational simulations: Lessons learned from ASCI. Los Alamos Na-
tional Laboratory, 2003.

[100] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Ap-
plications, 11(3):430–452, 1990.

[101] S. Reinhardt, J. R. Gilbert, and V. Shah. High performance graph algo-
rithms from parallel sparse matrices. In Proceedings of the Workshop on
state of the art in scientific and parallel computing, 2006.

[102] A. Reiser. A linear selection algorithm for sets of elements with weights.
Information Processing Letters, 7(3):159–162, 1978.

[103] C. Robertson. Sparse parallel matrix multiplication. Master’s thesis, UC
Santa Barbara, 2005.

[104] M. Roh and V. Shah. Investigation of amg as a precon-
ditioner for quadtree discretizations of level set problems.
http://gauss.cs.ucsb.edu/∼viral/amg/html/runall.html, Jun 2006.

[105] E. L. G. Saukas and S. W. Song. A note on parallel selection on coarse
grained multicomputers. Algorithmica, 24(3/4):371–380, 1999.

[106] SGI. The SGI Message Passing Toolkit.

[107] J. N. Shadid and R. S. Tuminaro. Sparse iterative algorithm software for
large-scale MIMD machines: An initial discussion and implementation.
Concurrency: Practice and Experience, 4(6):481–497, 1992.

[108] V. Shah and J. R. Gilbert. Sparse matrices in Matlab*P: Design and
implementation. In L. Bougé and V. K. Prasanna, editors, HiPC, volume
3296 of Lecture Notes in Computer Science, pages 144–155. Springer, 2004.

[109] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of
Parallel and Distributed Computing, 14(4):361–372, 1992.

[110] Y. Shiloach and U. Vishkin. An O(log n) parallel connectivity algorithm.
Journal of Algorithms, 3(1):57–67, 1982.

[111] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost graph library: User
guide and reference manual. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

184

http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://www.csm.ornl.gov/meetings/SCNEworkshop/Post-IV.pdf
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1007/PL00008268
http://dx.doi.org/10.1007/PL00008268
http://www.sgi.com/products/software/mpt/
http://dx.doi.org/10.1002/cpe.4330040605
http://dx.doi.org/10.1002/cpe.4330040605
http://www.springerlink.com/content/f47tmemb51frv14x/
http://www.springerlink.com/content/f47tmemb51frv14x/
http://dx.doi.org/10.1016/0743-7315(92)90075-X
http://siek.info/bgl.html
http://siek.info/bgl.html

Bibliography

[112] M. Slatkin. Isolation by distance in equilibrium and non-equilibrium pop-
ulations. Evolution, 47:264–279, 1993.

[113] B. Smith, J. Boyle, J. Dongarra, B. Garbow, Y. Ilebe, V. Kelma, and
C. Moler. Matrix Eigensystem Routines - EISPACK Guide. Springer-
Verlag, 2nd edition, 1976.

[114] B. Smith, D. Mizell, J. Gilbert, and V. Shah. Towards a timed Markov
process model of software development. In SE-HPCS ’05: Proceedings
of the second international workshop on Software engineering for high
performance computing system applications, pages 65–67, New York, NY,
USA, 2005. ACM Press.

[115] Smith, Robert P. and Eppinger, Steven D. Identifying controlling features
of engineering design iteration. Management Science, 43(3):276–293, Mar
1997.

[116] K. Stüben. A review of algebraic multigrid. Journal of Computational
and Applied Mathematics, 128:281–309, Mar 2001.

[117] R. E. Tarjan. Fast algorithms for solving path problems. Journal of the
ACM, 28(3):594–614, 1981.

[118] D. Urban and T. Keitt. Landscape connectivity: A graph-theoretic per-
spective. Ecology, 82(5):1205–1218, 2001.

[119] P. Vaidya. Solving linear equations with symmetric diagonally domi-
nant matrices by constructing good preconditioners. A talk based on
the manuscript was presented at the IMA Workshop on Graph Theory
and Sparse Matrix Computation, Oct 1991.

[120] H. A. van der Vorst. High performance preconditioning. SIAM J. Sci.
Stat. Comput., 10(6):1174–1185, 1989.

[121] G. van Rossum. Python Reference Manual. Python Software Foundation,
2006. version 2.5.

[122] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automat-
ically tuned sparse matrix kernels. Journal of Physics Conference Series,
16:521–530, Jan. 2005.

[123] C. Walston and C. Felix. A method of programming measurement and
estimation. IBM Journal of Research and Development, 1977.

185

http://links.jstor.org/sici?sici=0014-3820%28199302%2947%3A1%3C264%3AIBDIEA%3E2.0.CO%3B2-V
http://links.jstor.org/sici?sici=0014-3820%28199302%2947%3A1%3C264%3AIBDIEA%3E2.0.CO%3B2-V
http://www.netlib.org/eispack/
http://doi.acm.org/10.1145/1145319.1145338
http://doi.acm.org/10.1145/1145319.1145338
http://links.jstor.org/sici?sici=0025-1909%28199703%2943%3A3%3C276%3AICFOED%3E2.0.CO%3B2-G
http://links.jstor.org/sici?sici=0025-1909%28199703%2943%3A3%3C276%3AICFOED%3E2.0.CO%3B2-G
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://doi.acm.org/10.1145/322261.322273
http://dx.doi.org/10.1006/jema.2000.0373
http://dx.doi.org/10.1006/jema.2000.0373
http://dx.doi.org/10.1088/1742-6596/16/1/071
http://dx.doi.org/10.1088/1742-6596/16/1/071
http://domino.watson.ibm.com/tchjr/journalindex.nsf/2733206779564b3d85256bd500483abf/aa74f16b2732c9ee85256bfa00685add?OpenDocument
http://domino.watson.ibm.com/tchjr/journalindex.nsf/2733206779564b3d85256bd500483abf/aa74f16b2732c9ee85256bfa00685add?OpenDocument

Bibliography

[124] S. Warshall. A theorem on Boolean matrices. Journal of the ACM,
9(1):11–12, 1962.

[125] R. C. Waters. The Series macro package. SIGPLAN Lisp Pointers,
III(1):7–11, 1990.

[126] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical opti-
mization of software and the ATLAS project. Parallel Computing, 27(1-
2):3–35, 2001.

[127] M. Zelkowitz, V. Basili, S. Asgari, L. Hochstein, J. Hollingsworth, and
T. Nakamura. Measuring productivity on high performance computers.
In METRICS ’05: Proceedings of the 11th IEEE International Software
Metrics Symposium (METRICS’05), Washington, DC, USA, 2005. IEEE
Computer Society.

186

http://doi.acm.org/10.1145/321105.321107
http://doi.acm.org/10.1145/121999.122000
http://www.netlib.org/lapack/lawnspdf/lawn147.pdf
http://www.netlib.org/lapack/lawnspdf/lawn147.pdf
http://dx.doi.org/10.1109/METRICS.2005.33

	Acknowledgements
	Curriculum Vitæ
	Abstract
	List of Figures
	List of Tables
	Introduction
	I Sparse Matrices and Graphs
	Sparse Matrices in Star-P: Design and Implementation
	Introduction
	Sparse matrices: A user's view
	Data Structures and Storage
	Operations on distributed sparse matrices
	Constructors
	Element-wise Matrix Arithmetic
	Matrix multiplication
	Sparse matrix indexing, assignment, and concatenation
	Sparse matrix transpose
	Direct solvers for sparse linear systems
	Iterative solvers for sparse linear systems
	Eigenvalues and singular values
	Visualization of sparse matrices

	Looking forward: A next generation parallel sparse library
	Conclusion

	Parallel Sparse Matrices and Graph Algorithms
	Motivation
	Sparse matrices and graphs
	Sparse matrix multiplication

	Graph algorithms
	Breadth-first search
	Connected Components
	Maximal Independent Set
	Maximum weight spanning trees
	Strongly connected components
	Graph contraction

	Graph generators
	Random graphs
	Recursive matrix generator
	Regular 2D and 3D grids

	Graph partitioning
	Geometric mesh partitioning
	Spectral partitioning

	Conclusion

	Parallel Sorting
	Introduction
	Algorithm Description
	Local sort
	Exact splitting
	Element routing
	Merging

	Theoretical performance
	Analysis of computation time
	Analysis of communication volume
	Realistic assumptions

	Experimental results
	Experimental setup
	Comparison with sample sorting

	Conclusion

	Applications of Star-P and the Graph Toolbox
	An application in computational fluid dynamics
	SSCA #2 graph analysis benchmark
	SSCA#2 description
	Visualization of large graphs
	Experimental Results

	Solution of sparse linear systems
	Support graph preconditioners
	Algebraic multigrid preconditioners

	Non-negative matrix factorization
	Conclusion

	Landscape Connectivity: An Application in Ecology
	Introduction
	Modeling landscape connectivity
	Computing effective resistance
	Combinatorics in Circuitscape
	Numerics in Circuitscape

	Performance of Circuitscape in parallel
	Conclusion

	II Productivity
	Design of Experiments in Software Engineering
	Motivation
	UCSB classroom experiments and replay
	The 2004 experiment
	The 2006 experiment

	Questionnaires vs. automatic classification of 2004 data
	Visualization and observations from 2006 data
	Conclusion

	Timed Markov Models of Programmer Productivity
	Introduction
	Timed Markov processes
	Timed Markov models of programmer workflows
	Comparing UPC and C/MPI workflows
	Conclusion

	Bibliography

